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A new minimum spanning tree (MST) based heuristic for cluisgebiological data is
proposed. The heuristic uses MSTs to generate initial isoisiind applies a local search
to improve the solutions. Local search transfers the nanléet clusters with which they
have the most connections, if this transfer improves theatlve function value. A new
objective function is defined and used in the heuristic. Thjeaiive function considers
both tightness and separation of the clusters. Tightnedgasned by minimizing the max-
imum diameter among all clusters. Separation is obtainechioymizing the maximum
number of connections of a gene with other clusters. Thectibagefunction value calcu-
lation is realized on a binary graph generated using thesiioid value and keeping the
minimum percentage of edges while the binary graph is cadedeS&hortest paths between
nodes are used as distance values between gene pairs. Tlemejfiand the effectiveness
of the proposed method are tested using fourteen differgatskts externally and biolog-

ically. The method finds clusters which are similar to actwas using 12 data sets for
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which actual clusters are known. The method also finds bicédly meaningful clusters
using 2 data sets for which real clusters are not known. A dhiréeger programming

model for clustering biological data is also proposed foufe studies.
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CHAPTER 1

INTRODUCTION

Clusteringin biology has a history that goes back to Aristotle’s attetogrlassify liv-
ing organisms [6]. Today, clustering genomic data stands®@an approach to deal with
high dimensional data produced by high throughput tectgiesosuch ageneexpression
microarrays [94]. Biological data were limited to DNA sequence dataobethegenome
age in the 1980s [75]. Nowadays, terabytes of high throughiplogical information are
generated with the advent of new technologies, such as arretgs,eQTLmapping, and
next generation sequencinflow, a need for exploiting computational methods exists to
analyze and process such amounts of data in depth and irediffeays to address com-
plex biological questions regarding gene functions, gemexpression, protein-protein
interactions (PPI), personalized drug design, systend femctional analysis of plants
and animals, and organism-environment interaction. Tés$ as given birth to disci-
plines like bioinformatics, computational biology, asgkstems biology

In physics, before mathematical models were incorporated; before Newton, the
discipline was stamp collecting (i.e. descriptive). Irmmation of mathematical models
changed physics into a predictive science. In a similar regnmcorporation of computa-
tion into biology is changing the discipline from being acigstive science to a predictive
science. One of the prediction methods used in biology tdyaeahe high throughput

1
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data is clustering. As a data mining method, clustering obgac data was well studied
during the last decade. Clustering is also a well known andistl problem in the op-
erations research (OR) field. However, clustering of gecaata is relatively not well
studied by the OR community, although data mining techrédus/e been used in market
segmentation and facility location problems, for example.

Moreover, aspects of biological theories can be modeleld @R tools. One of these
aspects is that a small subset of genes are typically indalve particular cellular pro-
cess of interest, and a cellular process happens only insesafsample [72]. Another
aspect is that genes of the same pathway may be induced aesapd simultaneously or
sequentially upon receiving stimuli [163]. A third aspesthat most biologists assume
an approximatelgcale-free topologyr asmall world propertyfor networks constructed
from gene expressiodata [159]. Hence, one may say that genes with lcigfnectivity
are much fewer in number than genes with low connectivityd[14Thus, this chapter
discusses many diverse approaches and algorithms thantyrexist for clustering of
genomic data from an OR perspective by introducing backgtan molecular biology,
and presenting clustering approaches and techniques.hBpet is organized as follows:
Section 2 gives concise information about molecular biplkmgd relevant disciplines; Sec-
tion 3 discusses the clustering of genomic data problempemddes a problem definition
and data representations; Section 4 reviews recent digmitised for clustering genomic
data; Section 5 concludes and suggests future researdtiale for the operations re-
search community; and section 6 provides the glossary tithides definitions of the
italicized words and phrases throughout the text.

2
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1.1 Background Information about Molecular Biology

The essential cellular molecules for a biological systerfutation and interact with
its surrounding include DNA, RNA, proteins, antetabolite, all of which are under phys-
iological and environmental control. Many different irgetion layers exist among these
molecules such as PPI networks, i.e., interactomes, gendatery networks (GRNS),
biochemical networks, and gene co-expression networkli&ttt picture of these inter-
actions is being studied through systems biology.

Based on the central dogma of molecular biology, DNA trabssrinto RNA, and
RNA translates into proteins, some of which then serve aadysis in the production of
metabolites. A gene is expressed upon receiving the tratiscral signal. Genes have
activators andrepressos. Genes reveal no or low expression values without activato
Repressors block gene expression, even in the presencavatais. Transcription factors
(TFs) are activator or repressor proteins produced by geres bind toregulatory sites
and turn them on to transcribe RNA or off. Genes may show clest#eractions. For
example, the product of one gene may increase or decreaseatiseription rate of the
other, and this process may continue downstream includingporal or causal order of
molecular events.

It is often preferred to analyze thousands of genes’ dynaoigether rather than one
at a time. The DNA microarray (Figure 1.1) has been one of ttmenconly used technol-
ogy to measure thousands of gene expressions simultagljsland microarray data
have been stored in public databases such as the Gene Eap@ssibus (GEO) for fur-

ther analysis. For example, Affymetrix GeneChip Mouse Gead302.0 Array provide
3
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45,000 probe sets to analyze expression levels of more &0 transcriptsFeature

sizeis 11 M. 11 probe pairs per sequence are used.

P/N: 520019
Lot #: SAMPLES
Exp. Date: 00/00/00
r Research Use Only

L R

@52001900000000000000SAMPLES41931

Nl
Affymetﬁx'

Figure 1.1

A microarray chip produced by Affimetrix, courtesy of Affytni&.com

The data extracted from microarrays or a similar technolsgyalyzed using geverse
engineeringapproach. A simplified framework of reverse engineeringhoétlogy for
modeling GRNs from gene expression data is shown in Fig@enhich is adapted from
[85]. However, it is a challenging task to infer about GRNsdiese expression data are
high-dimensional, complex, and non-linear. Further cacaping the inference is that,
dynamic relations exist among thousands of genes, expredata involvenoise and the
sample-gene ratio is normally very small [161] since theyarchips corresponding to
samples are expensive. Co-expressed genes show cobgperdsion patters) indicating

that they may have similar functions [94] or co-exist in ahpedy. However, different
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external conditions may trigger a gene to be expressedasignivith different group of
genes [94]. Genes with similar expression patterns are fikalg to regulate each other
or to be regulated by a parent gene [104]. Here, the problequantifying the relations

between genes arise.

Data set Structural Information

_’- -Connectivity

-Density

—— v

Evaluation

o;i f

External Information > Modelling
from Databases like ’. -Parameters
GO -Simulation
Figure 1.2

Reverse engineering to infer about the extracted data

A powerful clustering approach as well as a predictive maday detect patterns or
relationships in expression data [94]. However, a predidatiodel should be guided by bi-
ological facts, meaning that results of predictive modktsusdd be validated by biological
knowledge. On the other hand, biological experiments shbelguided by computational
methods to make the best use of biological data and reduegimental and time costs

(Figure 1.3). Online databases exist to facilitagdidation of the results obtained from
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predictive models. Incorporation of the database knowdddgnodeling GRNs is essen-

tial for more accurate results or for comparing the modettity.

Biological
Research
Question

A 4

h 4

Experimental
Design and Test

v
Analyze the
Results

Validate
Results

Not Valid

Figure 1.3

Biological experiment and validation work flow

1.2 Problem Definition and Representations of Genomic Data

Clustering generates individual groups of data callpdrition, rather than assigning
objecs into the groups already known asadlassification[9]. A partition is defined as
follows:

P ={cy, ¢y, ..., cs } Wheres is the number of clusters.

> :_, |cil=n wheren is the number of objects and| is the cardinality otluster:
6

www.manharaa.com



X ={x1, 29, ..., z,, } is the set ofr objects and"={y1, v, ..., y» } IS the set of, patterns
wherey; € R? andd is the number of samples. The clustering problem is finding a
partition that has clusters with objects having similaterats.

There is no universally accepted definition of a cluster. By, objects in a cluster
should be similar or coherent and objects in different eissshould be dissimilar. In
other words, similarity within a cluster is maximized, anchiarity between clusters is
minimized.

Clustering is often used in the genomic data analysis pso€@snomic data analysis is
an integrated process that comprises low-level and higél-salysis. Cluster analysis for
genomic data consists of three main steps: 1) pre-progeserdata so that the clustering
algorithm can use the data as an input; 2) using a clustelgogitnm with an appropriate
distance measure; and 3) using an index andif@opgical databaseo validate the quality
of the clusters foundData pre-processings essential before clustering, since it affects
clustering results. The effects of normalization and pustering techniques have been
demonstrated on clustering algorithms [133], so have fleetsfof filtering methods [140].
The distance measure can also affect the results from adhugalgorithm [62].

Although there are many problems associated with clusiysis and there are many
biological data types, this chapter mainly focuses on ehisg algorithms as applied to
microarray data unless otherwise mentioned. As an illtigdr@&xample, we use a breast
cancer microarray data set. The data set is pre-procesSéfl [LThen 49 samples corre-
sponding to 4 different collection of tumors consisting @fLB genes each is used. The
pre-processed expression image is shown in Figure 1.4r @efwities and corresponding

7
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expression values are shown on the right vertical color bveoFigure. The samples are

shown on the y axis while the genes are shown on the x axis.
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Figure 1.4

Image plot of expression values

Since the real partition of the samples is known, clusteahgamples is desired for
the purpose of external validation. K-means (see sectibreé.applied in R base package
is chosen for clustering. THeucledian distancenatrix between samples and the number
of clusters, i.e., 4, are inputs to the K-means algorithme Pphrtition generated by K-
means and the real partition are shown in Table 1.1. It shioeldoted that the order of
the numbers identifying clusters of the real partition maylme the same in the generated
partition. The last step of the cluster analysis is valmatising theC-randindex. The C-

8
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rand value found is 0.343. This means that K-means couldmb&fpartition very similar

to the real one since the best C-rand value would be 1.

Table 1.1

Partition of samples, S1:5S49, into four clusters

lto 24 S1|S2|S3|S4|S5|S6| S7 | S8 | S9 |S10/S11|S12/S13|S14|S15|S16|S17 S18|S19/S20|S21| S22 S23|S24
K-means 4 14/4)2|1 1222|233 |1]1|1]1]4|4]|3|4]4]2]1]1
Real 1/1]1/4/4/4]4|1]|4]4/3|3]4|4 /44|33 [3]1|3[44)|14
251049 |S25/526|S27| 528|529 S30|S31|S32| S33|S34|S35) S36| S37| S38| S39| S40| S41| S42| S43|S44|S45| S46| S47| 548|549
K-means 4| 1)1]1]23|2|4|4|/2]2]|2|1]4]4]4]1]1 ]2 )11 |2]1]1]2
Real 114/ 4/4 /43|21 ]1 1222|111 /2]2|2]|4]|2]4]2]2]2

1.2.1 Quantification of Relations

Distance measures are used for defining relationships batthie biological molecules
of interest. Clustering algorithms use this relationsmpifferent ways. Hoeffding’s
D meausure outperforms the others in quantifying non-tirresociations when Person
correlation, Spearman correlation, and Hoeffding’s meastere compared for gene ex-
pression association analysis [45]. Bandyopadhyay and1Balpropose new distance
measures based on Euclidean atanhattan distanceneasures whereormalizationis
dependent on the experiment type, i.e., samples. Balamalnigan et al. [10] also use a
local shape based distance metric based on Spearman raalaton. The metric is used
to identify local similar regions in gene expression prafile

Pairwise relations between genes are often preferred fantdication, because it is

computationally less costly than stochastic approachesenrelation is considered con-
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ditionally to other relations. Correlations or distanceaswes, e.g., Euclidean distances
between gene pairs are calculated using the expressionatatdahen the resulting data
matrix is used in a clustering algorithm to find the clustergenes. However, use of
direct distance measures between pairs of genes is somaatigional as opposed to
transitive distance measures used between genes. Tradlitise of a distance measure
employs the “Guilt-by-Association” assumption that gehasging similar expression val-
ues generally have similar functions and the genes witldilss expression values do not
have similar functions [164]. The traditional approach@uflt-by-Association” because
a biological function is often the result of many genes iatéing with each other rather
than a result of a simple pairwise relation [164]. Howevemsitive distance implies that
there is at least one path, not necessarily of length 1 asamraige relation, between two
genes, and the length of this path is the distance between tResearchers proposed that
a transitive co-expression analysis applying a shortett gatance between two genes
(Figure 1.5) gives biologically meaningful results, rattiean a direct pairwise distance
measure [162, 164]. Zhu et al. [164] use a hybrid distanceixiadving both direct and
shortest-path distances fdustering Phan et al. [116] also use transitive directed acyclic
graphs for representation of expression patterns. Oncddataeare clustered based on a

distance measure, validation of the clustering algorithperformance is essential.

1.2.2 Validation of the Partitions

Before dealing with validation of the partitions generabgdclustering algorithms,

there are sub-problems to considéftering mechanisms to be used for the data, algo-

10
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Figure 1.5

Transitive distance - the distance between genes G1 and&&iker than 9

rithm to be used, the number of clusters, distance metricetaded if it is used by the
clustering algorithm, cut-off height (level) for tlileendrogramof genes in case a hierar-
chical clustering is used, approach to be used like agglatisenor divisive, validation
methods, and measures for generated clusters. These ageo$dine aspects that affect
validation results.

Outputs of clustering algorithms need validation to chediether the genes in the
same clusters have biological relations or not. Clusteosilshmake sense biologically.
Clusters should be reliable, not formed by chance. Thelgtabf a clustering algorithm,
the validation of the generated cluster udigjogical databass, and the comparison with

other algorithms are important aspects to measure ratialfitability can be assessed by

11
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both sensitivity of the algorithm to the user-specified paters and small modifications
to the data sets [4].

There are mainly four different ways to validate the perfante of a clustering al-
gorithm: 1-Visual validation: inspects if the algorithmteets a special structure of the
data, e.g., number of clusters may be detected on the 2D igsapgfor example, Figure
1.6 implies that the optimal number of clusters is two; 2efmal validation: requires the
knowledge of the real partition, e.g., C-rand or pre-defstedcture of the data. 3-Internal
validation: uses the features of the partition such as ceoimpas, e.g., ensuring that vari-
ance within clusters are small and examining the separatidusters, e.g., single linkage,
average linkage, complete linkage; 4-Biological validatiuses biological annotations to
see if the genes in clusters are enriched for biologicalsegignificantly.

Each clustering validation technique has its own bias td&argiven clustering crite-
rion [41]. Ensemble and multi objective clustering apptesc[41] are used to address the
problem of being biased towards a particular objective oluatering criterion. A good
clustering algorithm may or may not depend on prior knowkdy many user-defined
parameters. Jiang et al. [72] propose that the algorithmldhze able to extract useful
information, detect the embedded and highly connectedtsirel of genomic data, and
provide graphical representation of the cluster structUfanctions of some genes are
published in relevant databases and genes with known sifnii@tions may guide the
clustering by being assigned to the same cluster. Thisgb&riowledge can also be used
as an input for a clustering algorithm with the expectattaat the resulting clusters will be
more biologically meaningful [72]. For example, Cohen ef{3l] propose an algorithm

12
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Figure 1.6

2D Graphics of Clusters Generated by K-means

that integrates semantic similarities from ontology stnoe to the procedure of getting

clusters out of a dendrogram.

1.2.3 Representation of Expression Data

Gene expression data is usually represented as<an matrix wheren is the number
of genes andn is the number of time points or samples. Microarray featuoegene
transcripts, are the rows of the expression matrix and greesented as vectors. Gene
expression data sets are comprised of gene expressios texgltime points, also called
time course data (Table 1.2), or samples, such as controtreated. Clustering may
be performed by grouping genes over samples or samples exnesg Since the number

of genes is normally thousands and many of the genes haverlawariant expression

13
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values, filtering gene expression data to reduce the dimewgithen x m matrix is often
necessary. Gene interactions may be represented by grapigsan adjacency matrix.
A graph G consists of verticed/(G) that represent genes, edge$G) that represent
relations between genes. Assuming a loopless, simple grdjplcency matribxd(G) has
elementsy; ; equal to 1 ifi has relation withj, O otherwise. If the corresponding graph
is not relational, i.e, binary then a weiglat ; is associated with the edges showing the

strength of the relation betweeémand;.

Table 1.2

A Sample Microarray Data [69]

Gene Name OHR 15MIN | 30MIN 1HR 2HR 4HR 6HR

EST W95908 1 0.72 0.1 057 1.08 0.66 0.39
S'DAA"SMWEST 1 1.58 1.05 115 1.22 0.54 0.73
SID486735 1 11 0.97 1 0.9 0.67 0.81

)

& M

- Expression Values .
ﬂm& 1 2.09 337 5.52 4.89 3.05 327
IMAPI"'“aSI :_1 1 152 4.39 7.03 5.45 2.93 3.01
ﬂm& 1 2.25 4.67 7.94 5.94 376 4.46

Clusters are generated by clustering algorithms that usstaarépresentation as an
input. The way the biological data is represented, whethss a network, matrix, vector,

may ease the computation for the problem on hand. For instantaive hierarchical

14
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clustering (HC) algorithm has time complexity 6f(n?), however the time complexity
may be reduced t®(n?log n) using apriority queuedata structure [96]. Representation
of gene expression data asqax m matrix or network may help a researcher focus on the
genes of interest by making use of matrix theory and grapbryhe

Complex interactions between molecular components of dical cell are some-
times modeled with graph structures to get support fromtgthpory. Visualization and
computational representation of these interactions aganks enables wide range of ap-
plications [131]. Models of GRNs fall between abstractndss Boolean networks, or
relevance networks, and concreteness, including biodanmteractions with stochastic
kinetics [85]. Abstract models are scalable to large netadiut are further from reality
whereas concrete models are not scalable to large netwatk®idre accurately reflect
biological reality. Hence there is a trade-off between auidity and concreteness. Net-
work models can be discrete or continuous. Deterministiprobabilistic Boolean net-
works and Bayesian networks have discrete variables whéheaneural network models
and differential equations based models use continuoueblas. Abstract networks such
as co-expression networks use edges from hypotheticabimie, whereas concrete ones
such as PPI use edges inferred from physical interactidd®.[Chen et al. [24] construct
a network for experimentally detected PPI. Nodes repregmitins and edges are the
interactions with edge weights calculated based on a presteformula. The authors pro-
pose a novel measurement to assess the reliability of PiPig tagological features of the
network, since PPI data involves high false positive ratesadso develop an algorithm to
measure reliability efficiently in PP1 networks.

15

www.manaraa.com



There may be different relations between the molecular coapts. For instance,
the components may interact with each other, one of the caenge may regulate the
expression of the other, inhibit, or stimulate the actiafythe other [38]. All these re-
lationships can be represented using networks, or graphgphGstructures are used to
suggest some biological questions about discovering pateliug targets. Graph topol-
ogy reflects functional relationships and neighborhoodgeoks [38]. Network models are
a very popular way of formalizing available knowledge oflgkr systems in a consistent
framework [16]. For instancdactor grapls are minimal graphs for inferring expression
data [16]. Expression data may be integrated wriéimscription factor(TF) binding data
to further infer interaction networks, and time course esgion data may be integrated

with physical interaction networks to identify pathway$].1

1.3 Algorithms Used for Clustering Genomic Data

The algorithms used in clustering gene expression datasaraly grouped into two
classes: partitional and hierarchical. However, clustgalgorithms may also be grouped
based on the representation of data, relationship betwasters, distribution of the data,
and other properties. For example, some of the classes ofitaligys include flat, or
partition based clustering, hierarchical clustering|ustering, model based clustering,
metaheuristic clustering, fuzzy clustering, optimizatimased clustering, network based
clustering, and ensemble clustering. Of course, thesgpgroay have intersections, and
there may be hybrid approaches Chipman and Tibshirani [2&]sters may be exhaus-

tive, meaning that each object is assigned to a cluster, @rerbaustive, meaning that
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some objects may be assigned to no cluster. Exclusive custe non-exhaustive ones to
which an object is either assigned or not [96]. Objects asggasd solely to one cluster
in hard clustering; whereas soft clusters, sometimesdaallerlapping clusters, may have
common objects with non-negative value memberships. Ffarent definitions of hard,
soft, and partitional clustering see [96]. Different tymd<clustering algorithms are de-
fined based on diverse features, such as representatiomagfrelation between clusters.
The following subsections reviews the most recent and commethods.

EBSCO host and PubMed databases were investigated fonolgdhe articles used
in the review. However the articles utilized were not lindite these databases. “Cluster-
ing method” and “microarray data” or “gene expression datputs were used in EBSCO
host. There were 250 results, 29 relevant. “Clustering obgexpression data” input was
used in PubMed. 6706 results were pulled. The results weeeeiil based on being re-
cent, i.e., after 2005, and having potential contributmthie review being comprehensive
enough. More than 100 articles were used for the review. dh@wing sections present
classifications and review clustering algorithms used fololgical data analysis based on
the papers from the databases. Since one of our objectit@sisrease the interest of OR
researchers, more details are provided on some classagatiamns, such as optimization

based one.

1.3.1 Flat Clustering Algorithms

In flat clustering, objects are partitioned based on a (ams)gErity metric. K-means is

perhaps the most widely used method. K-means is a randoraigedthm which gener-
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ates cluster centers randomly and assigns objects to thestetuster center. The algo-
rithm modifies the location of the centers to minimize the swation of squared distances
between objects and their closest cluster centers. Risledal. [119] report that K-means
performed faster and resulted in more biologically ennitbkisters compared to three
other methods. On that study K-means was used to clusterrhbrai expression data
sets which had approximately 20,000 genes and 120 sampbégarigl et al. [17] use K-
means to cluster all left hemisphere brain voxels, 155 x 271 matrix is used as an input
for the algorithm. Sharma et al. [129] use a two-stage hypegpalgorithm applied in a
software package called HPCluster. The first stage redbeatata and the second stage is
the conventional K-means. The algorithm can handle 44,48@g without failure. [142]
develop a clustering method which doesn’t force all the gent® clusters. The method
employs a truncation of the clustering tree first, and thgsliep the K-means algorithm
to avoid K-means being trapped in local minimum. The mettsoapplied on both sim-
ulated and embryonic stem cell data. The authors supply &r@ryi and a package to
implement the method and visualize data. Tseng [141] dpgedoK-means derivative,
applying a penalty to avoid scattered objects being asdigrie clusters and weights to
incorporate prior information. The developed method idduse both mass spectrometry
and microarray data sets.

K-means requires specification of the number of clustersrbaflusters are generated.
K-means is also sensitive to noise that is prevalent in ggpeession data [72]. Further-
more, a partition generated by K-means may not be globaltynymn since it relies on
randomly chosen initial objects. Hence K-means is semstovinitial partitions; it may
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be trapped in local optima; and it is applicable to data witty@pherical-shape clusters
[149], which is not always the case for biological data. Tiheetcomplexity of K-means
algorithm isO(: k n m) [96] wherei is the number of iterationg; is the number of
clustersy is the number of objects and is the dimension of an object.

Partitioning Around Medoids (PAM) [76] is also a widely uskat clustering algo-
rithm. PAM computes medoids for each cluster. PAM is compartaly more costly than
K-means since it requires pairwise distance calculatiogaich cluster. Wang et al. [145]
use the system evolution principle of thermodynamics basedlAM to predict the num-
ber of clusters accurately. Huang and Pan [66] incorporaeng’s function knowledge
into a new distance metric. Distances between genes witlvikrsimilar function are
shrunk to O before the genes are clustered using K-medoitted®AM algorithm; then,
remaining genes are assigned to existing clusters andfoclosters.

Self-Organizing Map (SOM) is another flat clustering apptobased on neural net-
work methods widely used in gene clustering. Ghouila et48] pmploy a multi level
SOM based clustering algorithm in the analysis of macropluygme expression data. SOM
also requires the number of clusters and the grid strucfurewons as inputs. SOM maps
high dimensional data into 2D or 3D space. The potential afymg distinct patterns into
a cluster can make SOM ineffective [72].

Knowing or predicting the number of clusters correctly fdtad clustering algorithm
affects the quality of the clusters. Jonnalagadda andv@asan [73] develop a method to

find the number of clusters in gene expression data. Theyateatlifferent partitions from

19

www.manaraa.com



a clustering algorithm and find the partition that describesdata best. They use an index

measuring information transfer for additional clusters.

1.3.2 Hierarchical Clustering Algorithms

Hierarchical clustering (HC) algorithms generate dendaots that show relationships
of objects and clusters as hierarchies (Figure 1.7). HCrighgos can be divided into two
groups: agglomerative and divisive. In agglomerativeteltisg, all the objects begin in
individual clusters. Then, the object pair with the highastilarity is found and merged
to be included in the same cluster. The objects then merggglomerate iteratively, until
only one cluster exists which includes all the objects. Tleegimg process can be stopped
at any time with a stopping criterion. A complete run of an lagterative clustering
algorithm produces a complete graph where each node hasmslaith other nodes and
a dendrogram where relationships between objects appewaisiie HC methods work
contrary to agglomerative HC methods. Divisive clustenmgthods iteratively divide the
complete graph into smaller components by finding the pasbgects that have the lowest
similarity and removing the edges between them. Divisiustering can be represented
by a dendrogram that gives smaller components at each sieesplit of the network.
The dendrogram’s branches are the clusters. These braalsimegive information about
similarity between clusters.

Level Selection Method3ne challenge encountered in HC is selection of the level tha
is used to cut the dendrogram through a number of branchessponding to the number

of clusters. Wild and Blankley [148] test nine cluster leselection methods based on
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Figure 1.7

Dendrogram of the data generated for Figure 1.6

their lack of parametrization and simplicity. Neither oktfe methods outperform the
others consistently on all data sets used. Kelley et al. pr&¢ent an automated method
for cut-off level selection to avoid the dangers of using adixalued cut-off. Zahoranszky
et al. [158] present a new cluster selection method for H@. mlethod does not require a
similarity measure and is suitable for data with a graphesgntation. It relies on cohesive
clusters in which all pairs of objects are similar to eacteath

Langfelder et al. [82] propose an algorithm that definestelgsfrom a hierarchical
tree. However, they overcome the inflexibility of the fixeeight cut-off choice of the
dendrogram. Their algorithm adapts to the shape of the dgnam, is capable of detect-
ing nested clusters, and can combine the advantages ofdhiga clustering and PAM.
However, it is stated that optimal cutting parameters aticheson of number of clusters

in the data set are still open research questions. They dbpelglgorithm on both hu-
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man gene expression and simulated data. Although the #lgphas many user defined
parameters, it is reported that it works well with defaultisgs compared to PAM and
normal HC.

There are a number of HC applications for biological dataangi and Wang [88]
propose a dynamic agglomerative clustering method ang alpiglon leukemia and avian
pineal gland gene expression data. The numerical resuts 8tat the proposed method
is convenient for data sets with or without noise, which iBrail as scattered, singleton
or mini-cluster genes. The method collects scattered gene<luster and groups other
clusters dynamically and agglomeratively.

HC algorithms are not robust to noise, and they have high coatipnal complexity
[72] which isO(n?) [96] wheren is the number of objects. They are “greedy,” meaning
they combine the most similar two objects at the first step, the following steps are
affected by the initial step and so on.

HC and K-means algorithms introduced in the previous sedi@ root algorithms
upon which many algorithms are built. Comparison guidescti@ce of the clustering
algorithm [139, 137]: one should look at root clustering i@g@ehes and the desired fea-
tures required for the application in which one of the rogirapches is used. A review of
root clustering approaches, partitional, K-means, oran@ical and improved algorithms

based on the root approaches are presented in [6, 36, 33].
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1.3.3 Network Based Clustering Algorithms

HC algorithms make use of data represented as networks. \loweetwork based
clustering algorithms are not all hierarchical. As mengidearlier, biological data may be
represented using networks. Hence, many clustering éhgosi use network data struc-
tures to cluster biological data sets. For example, geneesgmn data may be regarded
as a complete network where the genes are the nodes of therkeamd pairwise corre-
lation values obtained from expression data are the edgghtesof the node pairs. Hence,
clustering this network data is a graph partitioning prablélgebraic graph theory may
be employed for the purpose of clustering a network. Onebaége graph theory tool
is spectral clustering, a form of graph partitioning whédre eigenvalues and eigenvec-
tors in the Laplacian matrix, the difference between thaeelicy and degree matrices,
are usually used to reduce the dimension of the similarityrimaThe new matrix with
reduced dimensions is used as an input for K-means or analip@rithm [79]. Higham
et al. [60] formulate a discrete optimization problem trestults in a class of spectral clus-
tering algorithms. They test the performance of the spkalgarithms on three different
microarray data sets involving different types of diseasigham and Kalna [59] present
spectral analysis afwo-signed microarray expression datd’he time complexity of a
general spectral clustering algorithm$n?) because of the eigenvalue computations.

Clustering based on each node’s neighbors is also widely fasgenomic data. Hut-
tenhower et al. [68] propose a graph based clustering &tgorcalled nearest neighbor
networks (NNN). This algorithm first generates a directeapgrwith each gene connected

to a specified number of nearest genes. Then, the graph isrtedvo an undirected one
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by keeping only the genes having a bidirectional relatignsi®verlapping cliques of a
specified size are merged to produce preliminary networksenTthe preliminary net-
works containing cut-vertices are split, keeping the cepiethe cut-vertices. They also
introduce a software implementation of the algorithm psgzb Mete et al. [103] propose
an algorithm to find functional modules from large biologinatworks. The algorithm
assigns nodes to the same cluster based on how they shareocongighbors. Using
three steps, the algorithm detects clusthtds, or most connected nodes, and outliers of
the network. The first step checks every vertex for being,dueing a defined number of
neighbors, or not. If it is a core vertex, a new cluster is exjgal. Otherwise, the vertex
is labeled as a non-member. In the second step, the algochiecks structure-reachable
vertices, a specified similarity measure between vertites) a core vertex. The third
step classifies non-member verticeshass, if isolated vertices have edges connecting to
two or more clusters, or as outliers. The worst case runiimg of the algorithm i€ (n?),
however it reduces t0(n) if the graph is random.

Using minimum spanning trees of a network to cluster bialabiata is practical since
edge removal divides one group of genes into two groupsttiiretu et al. [151] represent
gene expression data as a minimum spanning tree (MST).eCéete then found by three
algorithms that use different objective functions to gatersub-trees. One objective is
partitioning the tree into a specific number of sub-trees mmimizing the total edge
distances of all sub-trees. The second objective is to nizartihe distance between the
center of each cluster and its objects. The third objectv@milar to the second, except
that a representative point is used instead of a center. fligy seports that not much
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information is lost using a tree representation of the dats. S hey also propose a number
of clustering algorithms for MST, where two of them guaragéobal optimality for non-
trivial objective functions. The algorithms are implemeshis a computer software which
is available upon request from the authors.

Community structure finding algorithms use network streesand attempt to optimize
a measure callechodularity[113]. Higher modularity values are desired. Community
structure finding consists of dividing the network into goswaccording to certain struc-
tural information, likebetweennessf edges, rather than similarity information normally
used in traditional clustering approaches. In Newman amda@i[113] and Girvan and
Newman [49], the edges responsible for connecting manyg jpdivertices, not the edges
having the lower weights, are removed to find communitieghWiis technique, one can
count how many paths proceed along each edge with the exipadizat this number will
be largest for intercommunity edges, the betweenness meeadine simplest example
of the betweenness measure is based on the shortest pathemuddies are the sub-
networks where the edges within have high density connestimt the edges between
have low density connections. Communities appear to havierarbhical structure in
most real world contexts [29]. For instance, people makeggadments and departments
make up a university, just like words make up sentencesesees make up chapters, and
chapters compose books. In that sense, community findingiksto an HC approach.
HC here is equivalent to starting with the network of intgratempting to find the least

similar connected pairs of vertices, and removing the etigegeen them iteratively.
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Forming communities that maximize modularity is desiredr the modularity for-
mulation, see the objective function of model (4) in the “@ptation Based Algorithms”
section. Newman [112] expresses modularity in terms ofreigetors of the modularity
matrix of the network and proposed an algorithm which hasaing time ofO(n? log n)
to divide the network into clusters. Ruan and Zhang [123puiiice a heuristic that com-
bines spectral graph partitioning and local search to apémmodularity, and a recursive
algorithm to deal with the resolution problem, that is beumgble to find clusters smaller
than a scale, in network community detection. The algoritlasia higher weighted match-
ing score for protein community complex than [112]. The aljpon is also faster than
[112] for networks having more than about 1,500 verticesau€ét et al. [30] present a
fast hierarchical agglomerative algorithm to detect comityustructure in very large net-
works. The algorithm has a time complexity @{m dlog n) wherem is the number
of edges,n is the number of vertices andis the depth of the dendrogram. Schwarz
et al. [127] use this algorithm to resolve functional orgaution in the rat brain. New-
man [109] introduces a method of mapping weighted graphseeighted multigraphs,
or graphs with multiple edges, to be able to use communiticgire finding algorithms
[113] for weighted graphs. Gomez et al. [51] present a retdation of modularity to
be able to work on weighted, directed, looped networks deéffrem correlated data. It
is also mentioned that other methods such as clique peimoldil5] may be employed
for a similar task with a relevant adaptation. The cliquecpkation method was used to
find overlapping communities in yeast protein interactiatad Stone and Ayroles [132]
propose an algorithm to maximize modularity that modulategyhts of the edges of bi-
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ological data, represented as a graph. The algorithm isembph human and Drosophila
melanogaster data, compared with a agglomerative HC aad #pectral clustering algo-
rithms using 10,000 simulated data sets. The proposed ohétsthe highest percentage
of correctly clustered objects and correctly separateeéatbjfor a specified number of
clusters compared to others. The authors mentioned thaabledde of the algorithm is
freely available.

Label propagation is a recently developed method for findmgmunity structure. It
defines a community as a set of nodes such that each node kastad$ many neighbors
in its own community as in any other one. In the initial stag¢he method, all nodes
form a distinct community where each node has its own labdeenT at each time step, the
nodes join with that community to which the largest fractadnheir neighbors belong, by
adopting the corresponding label. If there are multipldcd® a random decision is made
with uniform distribution [138].

Lancichinetti and Radicchi [81] introduce a class of benahingraphs to test the per-
formance of two community structure algorithms. For a reva# algorithmic methods
to detect community structure in networks, see [110]. Fata [44] exposes commu-
nity detection in graph thoroughly from definition of basieraents of community finding
problem to the real world applications.

There are other graph based clustering approaches [64Td &gse the use of graphs
in solving problems, libraries such as The Boost Graph Inb@GL) for C++ and
igraph[32] have been developed. The igraph library can bleeeised into higher level
programs or programming languages like C/C++, Python an8ZR [NetworkX [54]
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is a Python-based package for complex network researchreTdre visualization and

exploratory tools for gene clusters to be interpreted masdye Cytoscape, and the gcEx-

plorer [126], [125] package for R programming language asghed for such a purpose.

Figure 1.8 illustrates two different layout for an expressilata generated by Cytoscape.

They are hierarchical and spring embedded layouts for pr@®tein and protein-DNA

interactions in the yeast galactose metabolism. Nodesdgesaepresent the proteins and

the protein-protein interactions.

1.3.4 Optimization Based Algorithms

Optimization based algorithms may be more attractive toQRecommunity since

optimization is at the heart of OR. Glover and Kochenber§@} propose a new modeling

and solution methodology for clustering that can be usediriding groups, or modules,

in genomic data. Modules can be regarded as cliques of siobjacts. They model the

clique partitioning (CP) over nodes formulated as in (2heathan over edges as in (1):

subject to

Maximize Z Wi Tij
(i.j)eE

.Z’Zj‘i‘xzr_ij S 1 Viujure‘/?i;éj#,r?

w; € {01} Vi,jeV. (1.1)
n—1 n Krnaw
Maximize Z Z Wij Z TikTjk
=1 j=itl k=1
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Layouts for interactions in the yeast galactose metabolism
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subject to

K"LG.L
doag =1 VieV, (1.2)
k=1

g € 0,1} VieVik=1, .. Kyu. (1.3)

In the first formulation (1),z;; is equal to 1 if the edgei,(j) is in the partition; O
otherwise. Thew;; coefficient is the unrestricted weight of an edge betweeren@d
nodej. £ andV represent the set of edges and set of vertices, respectinghe second
formulation (2),z;. is equal to 1 if node is assigned to cliqué. K,,.. is the maximum
number of cliques or clusters allowed,is number of nodes, and,; is defined as in
formulation (1). Formulation (2) has fewer variables anchber of constraints, compared
to (1). Although (2) is a quadratic model, it can be used fogdainstances of the CP
problem. This model is similar to the one in [108] except {B&f uses the maximization
objective.

Nascimento et al. [108] used a greedy randomized adaptivelsprocedure (GRASP)
based clustering algorithm for clustering different dagéssof microarrays which was
guided by an integer programming model similar to (2).

Clustering based on the modularity measure introduced ietWhrk Based Algo-
rithms” section uses heuristic algorithms. Maximizing thedularity measure is also

used as an objective function of the integer linear progiam)(in [19] as follows:

_ deg(i)deg(5)

. 1
Maximize —— > (B )i

(i,5€V)
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subject to

Ilﬁ'ij = Ilfji \V/U,'U,
Tij + Tjp — 200, < 1 Vi,j, ke V,
Tig + Ti5 — Ql’jk < 1 Vi,j, ke V,

Tk + i — 2.Tij < 1 Vi,j, ke V,

zi; € {0,1}Vi,j. (1.4)

The decision variables;; are defined as 1 if nodeésandj are assigned to the same
cluster, or O otherwiseE;; is 1 if there is an edge between nodesnd j, O otherwise.
deg(i) anddeg(j) are the degrees of nodésand j. m is the total number of edges.
Equalities and inequalities are reflectivity, symmetryd dransitivity constraints. The
number of variables can be reduced}9, and the number of constraints can be reduced
to (’;) by eliminating redundant variables and constraints wheassthe number of nodes.
Agarwal and Kempe [1] used the same ILP model with a diffevaniable definition. To
solve their model, they use a linear programming (LP) rongdilgorithm and a local
search proposed by Newman [111]. LP rounding provides uippend. Chen et al. [25]
uses LP to study the community structure of networks.

Lee et al. [84] propose a graph-based relaxed optimizapproach. They model clus-
tering as a quadratic program. Their method automaticatgminines data distributions
without a priori knowledge about the data that makes it Sop&o spectral clustering

approach.
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Tan et al. [134] propose a novel clustering approach basexixed integer nonlinear
programming (MINLP). They convert their model to mixed e linear programming
(MILP) by introducing new variables and constraints. Thpplg a generalized Benders’
Decomposition method to obtain lower and upper bounds fersthlution of MILP to

converge to optimal global solution for large data sets.iffioemulation is as follows:

n Cc S

Minimize Z Zwij(aikz — 2jk)?
=1 k=1

=1 j=1 k=

subject to

c
E Wi; = 1,Vi,
=1

wy; € {0,1} Vi, j, and zj, € RVj, k. (1.5)

Here,a;; is the measure of distance for genleaving features.w;; are binary vari-
ables having value of 1 if genieis in clusterj, or 0 otherwise. This model is expanded

as:

n S n Cc S

Minimize wa afk Zazkw”zjk +ZZz]kaU (zjk — aix)

i=1 k=1 i=1 j=1 k=1 7j=1 k=1 =1

Since the vector distance sum of all genes within a clusténéccluster center;y,

must be 0, following optimality condition holds:

Z wij(zjk — ai) = 0,V Vk. (1.6)
=1
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Parametesuit,; is introduced to the model to restrict some genes for spetifters.
It takes a value of 1 only for the cluster in which a gene isvedld to be involved, but O
for the other clusters. This parameter reduces the compuoghtourden of the problem.

Then, the formulation becomes:

S n Cc S

Minimize Y~ g — Y 0> Y (suity;) (amwi;zi)

i=1 k=1 i=1 j=1 k=1

subject to

(suit;;) kawa Zaiszj) =0 Vi, k,
1=1

Z(Su'itij)wij

i=1

Il
—_

Vi,
1 S Z(SUth)ww S n—c+1 V],

wij € {07 1} \V/'l, ja

2h <z < szk Vi, k. (1.7)
The first set of constraints are necessary optimality cardit the second set of con-

straints assure that each gene belongs to exactly onercli$te third set of constraints

assure that each cluster has at least one gene but no more-than 1 genes. The lower

and upper bounds for the continuous variahearez/; and-!,. To convert this non-linear

model to a linear model, new variables and constraints atedithb the model:
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Yijk = WijZjk,
U L
zje = 21— wij) < wije < 2z — 25(1 — wyy),

szka-j S Yijk S ZJUkU)Z‘j, VZ, VJ,VIC (18)

Tan et al. [135] apply an algorithm guided by this model t@éhdifferent microarray
data sets. Hayashida et al. [56] propose two graph the@agpioaches: 1) maximizing the
number of genes covered by at most a constant numhepofter gens, which are used
to report the expression level of a gene, and 2) minimiziegiimber of reporter genes to
cover all the nodes of the directed network. McAllister e{@9] present a computational
study to solve the distance-dependent rearrangemenechgiproblem by using MILP.
They present three models based on the relative orderinfgeagélements, assignment of
the elements to a final position, and distance assignmentbeta pair of elements. They
report that their models can be used for discoveries at tHeaular level. Dittrich et al.
[35] deal with the problem of finding biologically meaningfwb-networks from PPI data.
They transform that problem to the price-collecting Steinee (PCST) problem, where
the total sum of the edge weights of the subtree and the pasfstsciated with the nodes
not in the subtree are minimized. They are able to solve laggances of the problem in a
reasonable time to optimality by the ILP approach for thedfarmed problem. Melia and
Pentney [100] formulate spectral clustering in a directegb as an optimization problem
with the objective of weighted directed cut in the directeaidn. Metaheuristic Clustering

AlgorithmsMetaheuristics and heuristics are algorithms that geadeaisible solutions to
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hard problems. They are used when it is impossible or too tiosgly to find an optimal
solution to a problem. Metaheuristics are generally usgzhmition based clustering and
are rarely used in HC [14]. Genetic algorithms (GA), ant ogl@ptimization (ACO),
Tabu Search (TS), and simulated annealing (SA) are somdywided metaheuristics.
GAs are population-based heuristics and the steps areédsfsom biological phe-
nomena. Bandyopadhyay et al. [12] use a two-stage GA toezlosie artificial and three
real microarray data sets. They employ a variable stringttegenetic scheme and multi-
objectivity. In the first stage of the algorithm, they use tmdted version of Fuzzy C-
Means (FCM), which is fuzzy version of K-means to detect thmher of clusters. They
compare the algorithmto an HC, an SOM and a Chinese restammard clustering (CRC)
algorithm [117] using two cluster validation indexesltjusted rand indef67] for artificial
data set only because the rand index uses real clustersuasangsilhouette index122].
[80] also employ a multi-objective GA. One of the objectii®minimizing the total varia-
tion within clusters, which is identical to K-means’ objeet The other one is minimizing
the number of clusters in a partition. Iris and Ruspini d&tis sire used. [41] present a
Pareto-based multi-objective GA where objectives to baiped are validation indices.
Pareto set, the set including the best partitions based fteratdit objective funtions, is
used to ensemble the partition pairs to have a consensuisgmarT he method is applied
to six microarray data sets. The method is computationalpeesive, including the dis-
similarity matrix calculations the complexity 3(n*d) wheren is the number of objects,
andd is the dimension of an object The crossover algorithr®{ak?), wherek is the
number of clusters in the consensus partition. Wei and Chktig develop an entropy-
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based clustering method in which a GA is applied. The metlsed an adaptive threshold
for similarity between objects and a fitness function to elate the clustering accuracy.
It is compared with K-means, FCM, and an entropy-based fekzstering method upon
which the proposed algorithm was developed. Four datase¢sof which is breast can-
cer data, are used for comparison. [55] present a GA baségstadng algorithm with
a homogeneous clustering criterion, introduce a clusdailgty criterion. The method is
used for metabolomics data sets. The proposed clustenitipes are also available.

He and Hui [57] investigate ACO-based algorithms for cliategene expression data.
The proposed algorithm, Ant-C, consists of four phasestaiiation, tour construction,
pheromone update where ants leave trails on the ground tie gither ants, and cluster
output. Ant-C generates a fully connected network wherd eacle is a gene and each
edge is a similarity weight, or pheromone intensity. Averaberomone intensity is used
as a threshold to break the linkage of the fully connectedotto form clusters. MSTs
are used in case of a partially connected network to brealirikage of the network.
Pheromone intensities are used as weights of the spanmiag After finding the MST,
it is partitioned into sub-trees that form the clusters. Bob et al. [120] uses an ACO
algorithm for the featurselection problenm gene expression data.

TS moves away from the trap of local optimality by using dsication strategies.
[53] apply a TS strategy to K-harmonic means clustering tmdabeing trapped at local
minima. The method is tested on Iris data. SA [52, 20] alse dseersification strategy to
avoid being trapped in local optima. There are many otherigeiclustering approaches
for biological data. Particle swarm optimization (PSO)1189, 37, 70], GRASP [34],
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honey-bee mating [43], memetic algorithms [102], furthasint-first heuristic [47] are

some of them.

1.3.5 Other Algorithms and Issues

Clustering approaches are not limited to the methods listéie sections above. The
following explain some of the clustering approaches whaxloe classified in one or more
of the above sections, or in a different section.

Fuzzy clustering allows an object to be assigned to moredharcluster. The strength
of each object’s belonging to a cluster is defined by a merhigefgnction that has a value
between 0 and 1. The summation of membership values for eawhayer all clusters is
1 [23]. For fuzzy clustering implementation on biologicalta, Ravi et al. [118] propose
two fuzzy algorithms, variants of FCM, based onhaeshold acceptindpeuristic. The
algorithms are compared with FCM usiig Coli, Iris, and Thyroid data sets. The com-
parison is based upon the number of clusters and the optahsgs of objective functions.
Ceccarelli and Maratea [23] use a learning metric to impie@&1. The developed FCM
is used on Iris, breast cancer, rat, sporulation, and yesdatgbts. It is compared with
FCM using a modifiegentropyindex where membership values are considered as proba-
bilities, normalized and raised to the powerSaha and Bandyopadhyay [124] propose a
GA based fuzzy method having a computational complexit9 Gf n log n p g) wherek
is the soft estimate for upper bound of the number of clugersthe population size and
g is the number of maximum generation. The method is compardgdam information

based clustering algorithm using yeast expression datnskevalidated using both a bi-
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ological validation tool and silhouette index. [107] impedboth a FCM and a GA based
fuzzy clustering algorithms using a support vector mack8wM). The method is tested
on diverse microarray data sets using C-rand and silhoumgtiees. Alshalalfah and Al-
hajj [5] also use FCM with SVM on three different microarragta sets. There are many
other fuzzy clustering algorithms [61, 98, 11].

Biclustering, or subspace clustering, finds a subset ofi@ilyiexpressed genes over
a subset of samples. It simultaneously clusters both roereeg and columns, conditions
or samples, of a data matrix, or gene expression matrix [1@He justification to use
biclustering is that microarray data has large number dfifea, or genes, which may not
be relevant to the features in which a researcher is inedeand these features mask the
contribution of the relevant ones [104]. Another justifioatis that co-expressed genes
under certain conditions behave mostly independently udifflerent conditions [34]. Li
et al. [87] extend a generic biclustering approach incafwog overlapping capability.
It is mentioned that the method is convenient for finding gees with high genetic ex-
change and various conserved gene arrangement. The tinpecaty of the algorithm
is O(m3(n? + log*m)) wherem is the number of data points amdis the number of di-
mensions. Subspace clustering error, row clustering ,ecomMerage and discrepancy in
the number of clusters are used for validation purpose. sGhait et al. [28] show that
using discrete data coupled to a heuristic on continuoudeads to biclusters which are
biologically meaningful. Li et al. [86] present a qualitaibiclustering algorithm where
an expression data matrix is composed of 0 and signed inted@es. The algorithm is
applied onE. coli and yeast data sets and compared with other biclusterirogitions
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using biological enrichment criterion. Both the sourceecadd the server version of the
algorithm are available. Cano et al. [22] present an igefit system for clustering. The
system employs three novel algorithms. Two of them are biehing algorithms. Madeira
and Oliveira [95] and Busygin et al. [21] present compreh@nsurveys of algorithms

used in biclustering.

Shen et al. [130] propose a joint latent variable model feegnative clustering called
iCluster. iCluster is scalable to different data types, andbles the opportunity for next
generation sequencing, a new emerging technology alteent microarrays. Ma and
Chan [93] propose an iterative approach to mine overlappattgrns in gene expression
data. Their approach consists of two steps. First, initizdters are generated using any
clustering algorithm. Second, cluster memberships assigiaed by a pattern discovery
technique. At the end, a gene stays in the same cluster, ebahgsters, or is copied to
another cluster. Shaik and Yeasin [128] present a unifieddveork to find differentially
expressed genes from microarray data. The framework densfishree modules: gene
ranking, significance analysis of the genes, and valida@nadaptive subspace iteration
algorithm is used for clustering in the first module. Subspsteucture is identified by an
optimization procedure.

Yip et al. [155] present some search algorithms to find deeg®ns in categorized,
which are discretized, or dichotomized, gene expressitm ddeng et al. [101] introduce
an enrichment, a validation based on biological knowledggatabase, constrained time
dependent clustering algorithm. The algorithm is speciddisigned for time course data
and integrated with biological knowledge guidance. Nuedd.d114] also present three
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novel methodologies for functional assessment of timesmaricroarray data. Ernst et al.
[40] design an algorithm specifically for clustering sharie series expression data.

Model-based clustering algorithms [74, 58, 146, 150, 88¢ren assumption that bio-
logical data follow a statistical distribution and try t@ognize the distribution. Information-
criterion based clustering algorithm[90], adaptive auistg [27], neural network [156],
cluster ensemble [65], consensus clustering[105], gae@ ¢tical applications [106, 92]
are some of the diverse clustering approaches.

Table 1.3 presents a summary of the reviewed algorithm$ydimg one from each
class of algorithms based on availability of the algoritmuamber of times it is cited and
being recent. CRC is abbreviation for Chinese Restaurargté, ISA and memISA are
biclustering algorithms, and CAGED is an algorithm des@jf@ time series data. g is

clique size, s is the significant profile size, e is the numibedges.

Table 1.3

Summary of Reviewed Algorithms

www.manaraa.com

Class Algorithm | Compared Bi‘::gﬁ‘;;a'a "am“ Complexity | Availability
Flat Ric k}azgjggft CRC, o E’gio”, gggrge:rfg’s'; biological O(iknm) software
Hierarchical el_tzr?gz‘ggi;é’) HC, PAM Drosophila PPI t(;)étlce;rgT??zla'I o(n3) R package
Network :EJ gtfrzgggv%r Saulc(_:ljgls’lilirr]rr‘g (%,O%e()aéénes) biological O(n9) impIeJrr?gr?taﬁon
Optimization D|tt(r2|cok(1)§)t al. ZSS%ZSSE (~2r,lgg(;agr§t2ilns) biological | O(e2n+en2logn) software
LT ; T;(E(?St)al. KCXC??S (5(;] lerg?"nes) biological st impIeJr‘r?;/r?taﬁon
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1.3.6 Choice of an Algorithm

One issue in choosing a clustering approach for data is tole@bout the suitability
of clustering algorithms for a biological application. Ardpoulos et al. [6] address a gen-
eral set of desired features that change based on appticattdata type used: scalability,
robustness, order insensitivity, minimum user-specifiguait, mixed data types, arbitrary-
shaped clusters, and point proportion admissibility. 8miéity is concerned with time and
memory requirements, which increase as the data set bedarges They define robust-
ness as ability to detect outliers. Order insensitivity neethat clusters are not changed as
the objects’ order changes. Minimum user-specified inmitha name suggests, empha-
sizes a clustering algorithm’s reliance on user-specifipdt as little as possible. Mixed
data types and arbitrary shaped clusters refer to allowbjgets to have numerical de-
scriptive attributes and an algorithm’s ability to find ararily shaped clusters. Point
proportion admissibility means stability of the resultsemhobjects are duplicated and
re-clustered.

Another issue for choosing a clustering approach is theopmdnce evaluation of the
approach. Internal and external performance measuregeeged for evaluation. Inter-
nal measures rely on the structure of the partition, whezgesnal measures use external
information, such as the knowledge of the real clusters.| Reaters for samples are
known in advance, since samples are the designed expesrettie time course data.
Clusters of genes are not known in advance except for theamelbtated genes. Thus,
using external performance measures for algorithms thated genes is hard. After clus-

tering genes, researchers validate the clusters from gaiabakes if specific knowledge
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about the genes is available. Modularity, discussed in Metwork Based Algorithms”
section is an internal measure that makes use of the nesvsirkicture. Modularity is
a strong measure in the sense that biological networks i&duiime common structures.
Silhouette [122] is another internal measure based on thgaotness and separation of
the clusters. For an application of silhouette index, s@& [adjusted rand indexor C-
rand [67], is an external measure of agreement between ftif@yedit partitions, one of
which is real. C-rand is applicable even if the partitionsrd have the same partition
size [152]. Yeung et al. [152] give an example of calculatimg C-rand value. For other
performance measures see [91], and [156]. Using simulat dlusters’ stability on a
partition [42], reproducibility of the clusters [46], sigtical significance between clusters
[160], and comparing clustering of a combination of corali with remaining conditions

[153] are other ways to test the performance of a gene clogtatgorithm.

1.4 Conclusion and Future Research for the Operations Resezh Community

Clustering is fundamentally an optimization problem [7heTclustering problem has
awakened more interest in the statistics and computercigisciplines than in the op-
timization community [136]. Hence, the OR community, with@ptimization paradigm,
may become involved in and contribute more to clusteringpleros in the bioinformatics,
computational, and systems biology disciplines.

No clustering algorithm exists with the best performanaealbclustering problems.
This fact makes it necessary to use or design algorithmsazed for the task at hand.

Algorithmic methods are challenged by the introduction ighkthroughput technologies
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[15]. Guiding any clustering method with biological theasgarding genomic data is
essential. Mathematical programming (MP) formalism afféexibility to incorporate bi-
ological knowledge, and it is crucial to use algorithms guithy MP models for genomic
data analysis [7]. Hence, IP models taking into account thl@ical knowledge would
be a promising research direction. Clustering of genomia da a data mining problem
includes challenging problems providing a relatively hod druitful arena for the OR
community [50]. OR has been an underutilized resource ingbearch agenda popular-
ized by network science [3]. Network-based clustering f@oits may involve more OR

researchers to contribute the agenda.
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1.5 Glossary

Activator: a metabolite that regulates genes by increasing the ratarafdription.
Adjusted rand index: see index.

Betweenness:here defined for an edge. The number of shortest paths progegidng
an edge.

Biological database: database used for validating whether a clustering algurigen-
erates clusters that are biologically meaningful. Genelogy (GO) is one of the most
widely used biological database.

Classification: a supervised learning technique assigning objects intgrbweps already
known.

Cluster: is a group that includes objects with similar attributesus@#ring is an unsu-
pervised learning technique. Output of a clustering is abetusters including similar
objects, i.e., genes. Clustering is also an exploratoyrieie for network decomposi-
tion [85]. Clustering gathers objects into the same growgeflan a cluster definition or
criterion.

Clustering: see cluster.

Connectivity: minimum set of genes required to inhibit the synthesis ofaalpct.

C-rand: see index.

Data pre-processing: a process applied to raw expression data obtained from aricro
ray experiment. Pre-processing includpmlity assessmeniltering, normalization also

referred as low-level analysis.
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Dendrogram: a tree showing the hierarchical relations between groupbjefcts. Level
of a dendrogram is the cut-off value to cut the dendrogranbtaio the clusters.

Distance measure:a measure of relationship between a pair of objects. Ewaiédi),
Manhattan+.;), Minkovski (mn,;) are some examples. Correlatieg,] is also a widely
used distance measure. Howewgl, — c,;, approximation is used to satisfy the triangle
inequality attribute of a metric.

€ab — \/Z?zl (dai - dbi)zs Map = Z?zl (dai - dbi), MNgp = {/Z:—L:l (dai - dbi)p

Entropy index: see index.

Eucledian distance:see distance measure.

eQTL: expression quantitative trait loci, genomic locations rehgenotype affects gene
expression.

Expression pattern: pattern that a gene exhibits through different conditioms, sam-
ples.

Factor graph: spanning sub-graph of a graph.

Feature: attribute of a microarray either referrring to a spot of iaagene.

Feature selection problem: selection of the most important, relevant genes for further
analysis to reduce the dimensions of high dimensional data.

Filtering: removing the genes that don’t exhibit significant expressibange through
conditions or the genes, expression of which are below aicettireshold.

Gene: a functional unit of DNA with coded information. Reportemgs encode fluores-

cent proteins by which the expression level of gene can berebd [56]. The study of
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genesiis called genomics. Genome refers to all of the fundeigenetic units, hereditary
information, in a biological cell.

Gene expressiontranscription of DNA into RNA.

Genome:see gene.

Genomics:see gene.

Hub: gene with high connectivity.

Index: measure for validating the performance of a clusteringrélym. Adjusted rand
indexfor partitionsP; and P, (C-rand(Py, P»)), as an external validation index, is one of
the most widely used index for comparing the partition gatest by a clustering algorithm
with the real partition. Silhouette index for partitidh (S(P;)), as an internal validation
index, is used when the real partition of a biological dataasknown. Partition entropy

index(PFE) is a measure of asymmet§/-rand( Py, P»), S(P;) andPE formulations are:

C-rand(Py, ) = Zoy ()05 () &, (P ()

R REACIEACIRCNIB) wheren; ; is the number of ob-

jects at the intersection of clusterandyj, i is the cluster index foP;, j is the cluster index
for . n; is the number of objects in clustéer

R dom O - D i ini
—mnacle=t) wheren is the number of genes(i) is the minimum of av-

S(Py, P) =
erage distaces from gemneo the genes in the other clusters:) is the average distance
from gene(i) to the remaining genes in the same cluster.

PE = %Z;‘ Z;‘? iilogape;; Wherek is the number of clusters and, is the membership
of i in j [23].

Manhattan distance:see distance measure.

Metabolite: product of metabolism.
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Microarray: a chip consisting of thousands of microscopic spots, i&ufes containing
genes. Two signed microarray data includes both positidenagative values corrrespond-
ing to up and down regulation respectively.

MiRNA: small RNA that binds to mRNA to regulate expression.

MRNA: the RNA transcribed by a gene to be translated into a pro®ih [

Modularity: a measure of improvement on random connectivity.

Next generation sequencinga high throughput technology that allows measuring DNA
sequences directly rather than indirect way of measurieg, image processing of mi-
croarrays.

Noise: irregularities in the expression data. The sources of naisesample prepara-
tion and hybridization process [143]. Genes that are wesleto clustering, i.e., non-
informative genes [72] are also regarded as noise.

Normalization: transformation of raw expression data to ensure the corbpigyaf gene
expression levels across samples with the purpose of namgiihe systematic variations
arising from technological issues [133].

Object: gene or sample.

Partition: the output of a clustering algorithm, the set of the clusgerserated.

Priority queue: a heap data structure. A binary tree has a heap property ibalydf it

is empty or the key of the root has a higher value than all chntd subtrees of the tree
has a heap property as well. The root node has the highest a&atlionce it is extracted,
regeneration of a single tree from two subtrees t&k@sgn) time wheren is the number
of nodes. Heap tree is filled from left to right, once the readeleted the right most leaf is
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taken as the root. Figure 1.9 illustrates a tree with heapesty: a) First, tree extracts the
root and then the first move is bringing the right most leafdoant root position. Second,
root value, i.e., 6 is swapped with left subtree’s root vaiue, 8 and the resulting new
heap tree is shown as in b). The number of swaps is at mustrlgéhlef the complete

binary tree which igogn.

Figure 1.9

Priority queue

Quality assessmenta procedure to be applied on microarray data to ensure thatata
is ready for further analysis.

Regulatory site: 5-15 base-pairs of genes.

Reporter gene:see gene.

Repressor:a protein that represses the transcription of genes.

Reverse engineeringalso referred as deconvolution, process of analyzing biok data
to infer about the interaction of biological components.

Sample: each microarray chip.
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Scale-free topology:a network topology where the degree distribution of nod#éevioa
power law.

Silhouette index: see index.

Small world property: a network where each node has a small number of neighbor but
can reach to other nodes at a small number of steps.

Systems biology:a discipline that deals with the computational reconstomodf biolog-
ical systems.

Transcription factor (TF): activator orrepressorproteins produced by genes.
Threshold accepting:a local search strategy that allows up-hill moves for a misation
objective.

Two-signed microarray expression data:see microarray.

Validation: assessing the performance of a clustering algorithm eitfieg performance

indices or biologically.
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CHAPTER 2

A NEW MIMIMUM SPANNING TREE BASED HEURISTIC

Biological data may be represented by networks. For exangglee expression data
may be regarded as a complete network where the genes are ofdtie network, edges
are relations between genes and pairwise correlation valoi@ined from expression data
are the strength of the relation, edge weights, of the gemmg. pa

Clustering network data is a graph partition problem whiak many variations such
as clique partition and K-way equipartition. This partitsothe vertices of a graph into k
sets of equal size to minimize the weight of the edges withoheset [71]. Since the graph
partitioning problem is NP-hard [8], efficient heuristicsfind meaningful solutions are
developed [78].

A minimum spanning tree of a graph includes all of graph’siges. Using minimum
spanning trees (MSTs) of a network to cluster biologicahdatpractical since edge re-
moval divides one group of genes into two groups directymBengn — 1 edges from a
tree divides the nodes intodifferent groups. Xu et al. [151] demonstrate that no essen-
tial information is lost with an MST representation for dlersng purposes. Moreover, an
MST representation may overcome the computational burtlgraph based calculations
and difficulties with dependency on the geometrical shapéiseoclusters [151]. Deter-
mining the edges to remove and developing a quality measuobjective function, for
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evaluating the clusters are the most important aspectsvielaea MST based heuristic.
It is desirable to have both tight and separated clustere dight and isolated clusters
are more likely to have interdependent relationship. Hagesne usually either seeks to
maximize similarity within clusters or distance betweemstérs.

A new objective is proposed that seeks to obtain tight an@drségd clusters at the
same time. The objective function assumes a binary grapmeathere is a relation or
not. The idea is that clusters should have as small diamasgessible while an object of
a cluster should have as small number of connections witkratlusters as possible. In
order to achieve this objective, the most central or betveekgyes of the MST are removed
iteratively. The betweenness of an edge is the number ostaneedge appears on shortest
paths between any two node pairs. The betweenness cabcutdtine edges is described
in [113]. The shortest path betweenness for use in the heussadopted.

The work flow starts with Pearson correlation calculatiomsmpared upon expression
data sets. Correlation values are used as edge weightsdtrucirthe gene co-expression
network. The weighted network is transformed to a binaryvoet using a threshold
retaining the strongest edges while ensuring the netwoskillsconnected such that re-
moval of one more edge makes the network disconnected. Tig#ware calculated using
the partition and the binary network. In addition to cortigla calculations, expression
data are also used to calculate 6 different distances: &acleChebyshev, Manhattan,
Canberra, Minkovski, and 1-Pearson correlation. K-meBA$&/ and B-MST use these

distance measures and the given number of clusters to genpamditions. Partitions are
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also used to calculate adjusted rand index values. The waski§l shown in Figure 2.1

and an example is provided in section 2.

Correlations for
samples mxm

Distance matrix
samples

( K-means, PAM, B-MST )

( Clusters and Cluster memberships )4{ CSF )
\ Y

ARI TSI

Data Correlations for
nxm genes nxn

Calculate

Distance matrix
threshold genes

Binary graph
based on threshold

Figure 2.1

Flow of work

The chapter is organized as follows: the second sectiorridesdche B-MST method
in detail, the third section describes the comparison nustlamd test data sets, the fourth
section presents both external and biological validatesuits, and the fifth section is the

discussion and conclusion.

2.1 The B-MST Approach for Clustering

The B-MST heruistic has two phases. First, an initial soluis generated by finding
an MST of the expression data and the corresponding TSI velcaculated. Second, a

local search mechanism is introduced to improve the TSlevalthe algorithm is imple-
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mented in R and the igraph library [32] is used for applyingrPr algorithm to generate
MSTs and other graph operations.

Figure 2.2 summarizes how the initial solution is generaitgidg B-MST. An MST is
generated using distance values between gene pairs as edg#sirof the co-expression
network. n — 1 edges are removed from the MST to obtairclusters. Betweenness
values of the edges are used to decide which edges to rembgeadje with the highest
betweenness value is removed and all betweenness valuecaleulated to remove the
next edge with the highest betweenness. Edge removal gaggibtine desired number of
clusters are obtained. For the example illustrated in B2 number of clusters is chosen
2. Euclidean distance measure is used to form the MST. Thdesnhandexed edge is
removed when there is more than one highest betweenness sicothe example, the
edge, (1,3), has the smallest index.

The expression network is transformed to a binary graptgusthreshold as explained
in section 1. For the example graph in Figure 2.2, this tholesis 34 percent below
which the binary graph is not connected. In other words giesh5 edges are retained
and removal of one more edge makes the graph disconnectge. viczights are Pearson
correlation values between gene pairs. The higher the viilaestronger the edge is. This
binary graph is then used to calculate the TSI value.

Figure 2.2 a) is a representative complete expression gvaplé nodes and 15 edges.
The6 x 6 Expression data was generated using 6 normal distributwithgdifferent stan-
dard deviations. 10 samples were generated by each of theahdistribution. Red dashed
edges form the MST of the graph. b) is the MST of the graph inR®d dashed edges
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are the ones with the highest betweenness score that is8the) partition with two clus-
ters. The corresponding partition vector is also shownvedhe clusters. d) is the binary

network transformed from a).

i iNa) E | 2>OTO<§
(©
Cluster 1 @ @ Cluster 2
L] &

HEEHEBR

©

®

d) c)

Figure 2.2

Initial Solution by B-MST

Although MSTs were used in clustering biological data [15}d the betweenness
approach was applied on graph partition [113], the betwesnapproach was not applied

on an MST for clustering biological data.

2.1.1 Tightness and Separation Index

A new objective function, TSI, is defined and used in the rstigri The TSI considers
both the tightness and the separation of the clusters. Aégktis obtained by minimizing
the maximum diameter among the diameters of clusters. Téameter of a cluster is

defined as the maximum of the shortest path distances betyerenpairs. Separation is
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obtained by minimizing the maximum number of connectionsa gkene inside a cluster
with other clusters. The TSI value calculation is realizadte binary graph. The shortest
paths between nodes are used as distance values betweepagrsnelhe idea of using
shortest paths is based on the transitive gene expresgpooeegh assuming that functions
are often the result of many genes interacting with eachratitber than a result of a
simple pairwise relation[164]. However, transitive exggien implies that there is at least
one path, not necessarily of length 1 (assuming a binaryhyrapin a pairwise relation,
between two genes. The length of this path is the shortebtgistance between these
genes. Researchers propose that a transitive co-expremsadysis applying a shortest
path distance between two genes as in (Figure 1.5) gives molagically meaningful
results, rather than a direct pairwise distance measutz [li&]. The TSI is formulated

as follows:

Doz + kO (2.1)

Doz =man{Ds}, S ={1,2,...,c} wherecis the number of clusterd), = max, {d,;},
se 1,JENF]

N ={1,2,...,n} wheren is the number of genes,; is the shortest path distance between

n n
genei and geng. k% = max { E a;j — E a;;x;; }+, whereg;; is 1 if genes and;j are
iEN,iF] £ —
J= J=

connected, 0 otherwise ang) is 1 if 7, j are in the same cluster, O otherwise.

For example, TSI value for the partition in Figure 2.2 c) istaneD,,, . is 4 andk°“

max

is 2.
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2.1.2 Local Search

Local search seeks for improvement on objective functidonesédased on a neigh-
borhood definition. Here, neigborhood is defined in such a thay a partition”’ is a
neighbor to a partitiorP if a gene inP is transferred from its current cluster to another
cluster with which it has a connection. Starting from thetfgene of candidate genes
list (Clist), which includes the genes that have at leastammmection with other clusters,
a gene is transferred to the cluster with which it has thedsghumber of connections.
This is the first cluster in the transfer list (Tlist(i)) thatludes the clusters to which gene
i has at least one connection, and this list is sorted desogdder of the number of con-
nections that the gene i has with other clusters. New obgetlue is calculated. If the
new value is smaller than the initial objective functionualthe partition, objective value,
and transfer list are updated. This procedure is repeatBdtluere is no improvement
andn number of steps have been executed after an improvementg whg the number
of genes. The local search procedure is shown in Figure Zh8.s€cond and the fourth
objects are transferred to the first cluster. TSI value charfigpm 6 to 4.

Local search transfers the nodes to the clusters which ey the highest number of
connections, if this transfer would improve the objectivadtion value. For example, the
cluster membership changes with applying local searcthiapartition in Figure 2.2.

It takesO(cn?) time to find the initial solution whereis the number of clusters, using
B-MST. This is due to betweenness calculations takixig?) time and are repeated- 1
times. Local search take&3(cn(m + n)) time to find the best neighboring solution for a

given solution, wheren is the number of edges in the binary graph.
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Figure 2.3

Local search procedure
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2.2 Comparison Methods and Data Sets

Here, the performance of B-MST method is compared to K-med2&ll and CSF. K-
means is implemented in the R base package, PAM is implechénte clusterpackage,
and the community structure finding algorithm [111] CSF ipliemented in the Rgraph
package. One reason for choosing K-means and PAM is thatafeewidely used, and
fast in clustering high dimensional data. The CSF is a redast and well cited method.
K-means has a time complexity 6f(tcnm) [96] wheret, ¢, n, m are the number of
iterations, clusters, objects, and attributes respdgtiRAM takesO(c(n — ¢)?) for each
change and CSF i©(n?®). The system times for B-MST, K-means, PAM and the local
search on Leukemia data set using Euclidean distance neeas0.086, 0.128, 0.131,
4.355 respectively.

12 datasets are used for external validation and 2 data setssad for biological
validation. The features of the data sets are summarizedileD.1.

The microarray is a device which measures expression (anaecdf RNAS) of thou-
sands of genes simultaneously. BreastA and BreastB arercdiagnosis microarray data
sets having 98 and 49 samples respectively with 1213 attsbuBreastA is generated
using 2-channel oligonucleotide microarrays and BreastBenerated using 1-channel
microarray technology. DLBCLA is a diffuse large B-cell lpimoma data set having 141
samples with 661 attributes. Tumor specimens and retrtispedinical data from 176
DLBCL patients were analyzed and 80 percent of the sampldg 176 tumors) were used.
The protein data set has 698 protein folds with 125 attrdbautultiA is a gene expression

data set with 103 cancer type samples and 5565 genes. Nagdhe same data set which
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Table 2.1

Summary of Data Sets

Datasets # of objects # of features # of classes

ALB 38 722 3
Brain 37 781 5
cGCM 90 630 13
Leukemia 248 985 6
LungA 197 188 4
Novartis 103 502 4
BreastA 98 1213 3
BreastB 49 1213 4
DLBCLA 141 661 3
Protein 698 125 4,27
CNS 112 9 4
Yeastl 384 17 5
Yeast2 474 7 NA
Yeast3 2467 79 NA

has been normalized and the number of genes reduced to 18€éstB, BreastB, DLB-
CLA, DLBCLB and MultiA are pre-processed by [63]. The datéssmentioned till here
are described and addressed in [108]. The ALB, LeukemianBc&CM, LungA can-
cer data sets are obtained from http://www.broadinstibwtgcgi-bin/cancer/datasets.cgi.
Yeastl is the yeast cell cycle data described in [154]. CN8ata and Yeast2 yeast sporu-
lation data are addressed in [12]. Yeast3 is the yeast cdllt clata mentioned in [39].

All of the data sets except the last two yeast data are useexternally validation.
Adjusted rand index (ARI) [67] is used for this validation.ighHer ARI values indicate
that partitions generated are closer to the real ones. ARksacan take on between -1
and 1. The Yeast2 and Yeast3 data sets are used for biolegiaddtion. Since high ARI

values correspond to low TSI values in most of the compasisthre algorithms resulting
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in the best two TSI values are compared. B-MST is compareld @8F using Yeast2
and with PAM using Yeast3 since the CSF found the best TSlevimluYeast2 and PAM

found the second best (after B-MST) TSI value for Yeast3. ofithms are compared
based on significantly clustered genes with the same brdbgrocess information which
is determined by Gene Ontology (GO) terms. A similar biotaginference strategy that
was used by [12] is employed. This strategy results in mieltgelectivity values. The

highest selectivity values of all the clusters obtained &ghealgorithm are compared.

2.3 External and Biological Validation Results

As mentioned earlier, B-MST, K-means and PAM use distancasomes to generate
partitions. However, the CSF is independent of a distancasore. The CSF algorithm
uses the binary network to generate clusters. For B-MSBcill search does not result
in better ARI value, then the initial solution and the copasding TSI value is shown
through tables 2-7. Biological inference is realized ustayGO [2]. FatiGO reports the
percentage of annotated genes for a biological procesdustecand the same percentage
for the remaining genes of the data set. Using these pegmntdues, selectivity values
for all clusters are calculated. For a given cluster anddgiickl process, the selectivity is
the difference between the percentage of annotated gettesdtuster and the percentage
of annotated genes outside this cluster for the same bdbprocess. Highest selectivity
values are compared for the CSF and PAM. The CSF was notleligibthe Yeast3 since

it finds at most 14 clusters while | determined the number uételrs 15.
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2.3.1 External validation

To conduct our external validation, the ARI values were fbtor the partitions gen-

erated by B-MST, K-means, and PAM. The first 12 data sets sliowable 2.1 are used

for the external validation. Each table presents ARI andvBSiles for a different distance

measure. The first column gives the names of the data satstfimsecond column to the

fourth column, ARI values for B-MST, K-means and PAM are givEom the fifth to the

last column, TSI values for B-MST, K-means and PAM are giv€he highest ARI and

TSI values for each data set are in shown in bold.

Table 2.2

ARI and Objective Values for Euclidean Distance Measure

ARI TSI
Data Sets B-MST K-means PAM B-MST K-means PAM
ALB 0.781 0.138 0.394 16 25 20
Brain 0.596 0.429 0.774 20 23 19
cGCM 0.636 0.115 0.228 39 39 30
Leukemia 0.527 0.684 0.939 108 101 81
LungA 0.069 0.765 0.872 38 40 40
Novartis 0.946 0.875 0.897 34 47 36
BreastA 0.565 0.597 0.527 40 31 31
BreastB 0.155 0.128 0.213 42 42 42
DLBCLA 0.162 0.076 0.176 104 114 108
Protein-4 0.106 0.320 0.203 437 361 428
Protein-27 0.094  0.137 0.090 535 518 516
CNS 0.085 0.030 0.125 58 60 61
Yeastl 0.114 0.008 0.069 173 186 174
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Table 2.3

ARI and Objective Values for Chebyshev Distance Measure

ARI TSI
Data Sets B-MST K-means PAM B-MST K-means PAM
ALB 0.577 0.311 0.241 19 19 20
Brain 0.503 0.623 0.390 23 24 20
cGCM 0.636 0.115 0.228 39 34 32
Leukemia 0.311 0.280 0.425 104 106 115
LungA 0.144 0.288 0.290 44 45 41
Novartis 0.491 0.270 0.696 45 50 51
BreastA 0.215 0.269 0.223 35 37 38
BreastB 0.095 0.218 0.050 42 43 42
DLBCLA 0.117 0.083 0.114 110 112 108
Protein-4  0.099 0.265 0.308 433 476 455
Protein-27 0.067 0.133 0.080 533 535 526
CNS 0.111 0.016 0.110 57 61 51
Yeastl 0.104 0.022 0.091 185 182 174
Table 2.4

ARI and Objective Values for Manhattan Distance Measure

ARI TSI
Data Sets B-MST K-means PAM B-MST K-means PAM
ALB 0.781 0.092 0.394 16 22 20
Brain 0.662 0.420 0.822 19 23 18
cGCM 0.553 0.230 0.301 37 30 29
Leukemia 0.557 0.790 0.947 97 96 80
LungA 0.074 0.497 0.873 36 43 40
Novartis 0.897 0.555 0.947 35 48 34
BreastA 0.406  0.597 0.527 36 43 33
BreastB 0.194 0.128 0.129 42 42 31
DLBCLA 0.402 0.124 0.352 108 107 102
Protein-4 0.111 0.314 0.160 489 439 452
Protein-27 0.075 0.125 0.071 532 541 527
CNS 0.101 0.032 0.095 57 61 61
Yeastl 0.100 0.006 0.073 166 182 174
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Table 2.5

ARI and Objective Values for Canberra Distance Measure

ARI TSI
Data Sets B-MST K-means PAM B-MST K-means PAM
Leukemia 0.547 -0.005 0.453 90 115 121
LungA 0.064 -0.023 0.043 43 28 47
BreastB 0.158 0.241 0.129 40 42 31
DLBCLA 0.535 0.336 0.697 100 105 105
Protein-4 0.112 0.272 0.144 487 461 349
Protein-27 0.098 0.149 0.121 530 530 523
CNS 0.076 0.014 0.031 53 54 55
Yeastl 0.107 0.004 0.048 165 182 174
Table 2.6

ARI and Objective Values for Minkovski (P = 3) Distance Megsu

ARI TSI
Data Sets B-MST K-means PAM B-MST K-means PAM
ALB 0.833 0.138 0.355 17 21 21
Brain 0.596 0.438 0.774 20 22 19
cGCM 0.641 0.153 0.256 39 31 34
Leukemia 0.626 0.808 0.804 105 94 81
LungA 0.083 0.531 0.887 40 41 40
Novartis 0.684 0.681 0.973 42 38 34
BreastA 0.692 0.633 0.462 39 32 30
BreastB 0.345 0.286 0.218 39 42 41
DLBCLA 0.270 0.051 0.143 106 116 108
Protein-4 0.062 0.297 0.249 465 454 467
Protein-27 0.080 0.119 0.096 533 531 519
CNS 0.057 0.025 0.083 55 61 53
Yeastl 0.061 0.009 0.065 166 186 173
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Table 2.7

ARI and Objective Values for Correlation Distance Measure

ARI

Data Sets B-MST K-means PAM

ALB 0.341
Brain 0.542
cGCM 0.527
Leukemia 0.594
LungA 0.088
Novartis 0.898
BreastA 0.406
BreastB 0.205
DLBCLA 0.330

Protein-4  0.099
Protein-27 0.089
CNS 0.066
Yeastl 0.283

1.000
0.557
0.554
0.575

0.333
0.620
0.470
0.266

0.192

0.243

0.131

0.160

0.522

0.910
0.789
0.578
0.940
0.317
0.946
0.527
0.420
0.214
0.238
0.117
0.134
0.445

17
20
29
81
40
34
41
42
111
448
519
51

TSI
B-MST K-means PAM
21 17
25 20
41 30
108 106
48 41
34 44
39 42
41 42
103 92
432 362
535 528
53 50
169 140

173

Investigating these tables, B-MST outperformed both Kimsend PAM in 6 data sets

out of 12. These data sets are BreastB, DLBCLA, ALB, cGCM,sYeaand CNS. For

example, B-MST finds the best rand index values, 0.781, Q&781, 0.833 in 4 distance

measures, Euclidean, Chebyshev, Manhattan, Minkovsktlamaorst value, 0.341 only

once in Pearson for ALB. Remaining data sets are evaluaidimilar manner. K-means

and PAM outperformed B-MST in 2 and 4 data sets respectively.

For the same 12 data sets, ARI and TSI values were also foungl the CSF. As can

be seen from Table 2.8, B-MST'’s highest ARI values are coeth&r the ones found by

CSF. B-MST found higher ARI values for all of the data setssgtd¢_eukemia.
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Table 2.8

ARI and Objective Values for B-MST and CSF

ARI TSI
Data Sets B-MST CSF B-MST CSF
ALB 0.833 0.109 17 18
Brain 0.662  0.326 19 23
cGCM 0.641  0.364(11 clusters) 39 29
Leukemia 0.626 0.661 105 86
LungA 0.144  0.059 44 27
Novartis  0.946 0.795 34 32
BreastA 0.692 0.521 39 35
BreastB 0.345  0.238(3 clusters) 39 47
DLBCLA 0.592 0.274 97 105
Protein-4 0.139 0.137 432 443
Protein-27 0.098 0.061 530 460
CNS 0.111 0.024 57 47
Yeastl 0.283 0.281 169 110

From Tables 2.2-2.7, it is observed that the maximum ARI eslcorrespond to the

minimum of the TSI values in most cases. Hence, it is propdlsadthe partition with

smaller TSI value is expected to have more biologicallywathe clusters.

2.3.2 Biological Inference

GO biological process terms of the clusters are investibatng the Yeast2 and

Yeast3 data sets. Yeast2 clusters found by B-MST are comipetk CSF's and Yeast3

clusters from B-MST are compared with PAM’s. The highestslity values in a cluster

are chosen for comparison. The number of clusters is datedrto be 8 for Yeast2 and

15 for Yeast3. The numbers are decided by visualizationetitndrograms generated by

hierarchical clustering (HC) with average linkage such thasters include enough num-
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ber of genes visually. HC cut-off levels are 650 and 6 for Y2asd Yeast3 respectively.
Clusters having less then 10 genes are not considered. Thbemwf clusters are also
supported by Dynamic Tree Cut algorithm [82]. Dynamic Treg @=tects the number of
clusters based on the shape of a dendrogram. It has userddpéireemeters such as min-
imum cluster size and the cut height of the tree. These pdeasare set to reasonable
values 10, 150.5 and 10, 13 for Yeast2 and Yeast3 respactdehdrograms for Yeast2
and Yeast3 are given in Figures 2.4 and 2.5. The Euclideaandis measure was used in

all algorithms.
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Figure 2.4

Dendrogram for Yeast2
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Figure 2.5

Dendrogram for Yeast3

GO terms are too general at lower levels and too specific atrdppels. Hence, GO
levels are chosen between 7 and 9. The highest selectiiitgwvaf the clusters are plotted
in Figure 2.6 and Figure 2.7. For example, for cluster 4 otiIFeg.6, the highest selectivity
value for B-MST is 20.46 while it is 11.66 for the CSF. Zeroues in the figures indicate
that the there is no significant biological process found rgnitve genes in this cluster.
Negative value in the Figure 2.7 indicates that the pergentd annotated genes in this
cluster for a specific biological process is less than thegrgage of the annotated genes
in the remaining clusters for the same biological procashis sense, a negative value is
not worse than a zero value, since it at least indicates aaesdip regarding a biological

process.
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Highest selectivity values found by B-MST and CSF
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Highest selectivity values found by B-MST and PAM
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2.4 Discussion and Conclusion

Clustering high throughput biological data efficiently issential especially when
there is a lack of prior information about the interactioe$ween biological molecules.
The high dimensional nature of the abundant data makes @ssacy to design efficient
and effective algorithms generating biologically meafimhglusters.

In this study, a minimum spanning tree based algorithm, BFMS&developed to clus-
ter gene expression data efficiently. The algorithm usesnaaigective function, TSI,
which is used as a measure of tightness and separation artteetsne considering tran-
sitive distances on a binary graph to generate biologica#gningful clusters.

Many distance measures and diverse data sets were emptoy&RIf calculations to
show that B-MST is compelling since a few distance measurdslata sets are easily op-
timized [121]. Moreover, a unique validation index fed bglbgical theory is developed
to be used for guiding many clustering approaches as welt/sSHB.

B-MST is tested using 14 different data sets. Twelve of th&a dats are used for
external validation by the ARI measure. ARI values generbteK-means, and PAM are
compared with values by B-MST. B-MST outperforms the othethnds for 6 data sets.
B-MST'’s performance is also compared with a well cited comityustructure algorithm,
CSF. B-MST'’s highest rand index values are compared with'C&Hues, since CSF is
independent of distance measures. B-MST outperforms C8kF @fi the data sets except
Leukemia. The remaining two of the 14 data sets are useddtodical inference. B-MST
finds clusters with higher selectivity values than CSF, pkéar one cluster for the Yeast2

data set. B-MST finds biological process relevance in 7 efestut of 8 while CSF finds
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relevance in 6 of them. B-MST also finds higher selectivitjpea in most of the clusters
than PAM for Yeast3. B-MST finds biological process relevaimc13 clusters while PAM
finds in 10 out of 15.

The new TSI measure serves as a new quality measure to eahdasult from a
clustering algorithm using biological data. In externalidation, minimum TSI values
corresponds to maximum rand index values in most of the casdsological inference,
CSF finds quite smaller TSI value for Yeast2, (100) compape®-MST (100). B-MST
finds a smaller TSI value, (845) compared to PAM (853). Henegarding biologically
enriched genes in clusters with lower TSI values, the TSIgead quality measure to be

used in clustering biological data.
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CHAPTER 3

CONCLUSION AND FUTURE RESEARCH

Clustering of high throughput biological data is a powerhdthod to guide biologi-
cal experiments which impose high laboratory cost othexwidthough many clustering
algorithms exist, they are either general purpose or ineffi¢co handle high dimensional
data. It is necessary to build efficient and effective alfpons that consider biological
facts as much as possible. Here a MST based heuristic isapmdebnd a new objective
function is defined to assess the quality of partitions gateerby the heuristic. The objec-
tive function uses transitive distances rather than pagwihich is biologically reasonable
since an output is by the interactions of many biological porents rather than two.

Different network topologies will affect the TSI value sen€SI uses a binary network.
For example, if the network is dense, clusters will have sigiaineters and the genes
inside clusters will have a large number of connections wikier clusters. Hence, B-MST
and TSI measure should be used especially when the binamprieis sparse. Another
issue when the binary network is dense is #gt. will dominate the effect oD,,,,.. This
fact leads to parameter optimization study employing ceffié co-efficients for botlv,,, .
andkc“ parameters.

The optimization paradigm helps design powerful algorithimce clustering could
be viewed as an optimization problem. The objective fumct®minimized using two
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variables,D,,... andk“ . The first one is for obtaining tight clusters and the lattee &
for separating the clusters well.

Regarding the high dimensional nature of the gene expmedsita, a heuristic is devel-
oped and tested by comparing two commonly used and one ra@eémtell cited clustering
algorithms using 14 different data sets and 15 scenarioth &dernal and biological val-
idation indicate that the proposed method is both efficianteffective for clustering high
throughput biological data.

For a future algorithmic study a mixed integer programmilgtering model is devel-

oped as follows:

Minimize D,,,, + k%

max

subject to

Dmax Z dij(flfis—‘—{lfjs—l) Vi,j,s ’L<] (31)
o =1 Vi (3.2)
s=1
dow > 1 Vs (3.3)
=1
> Ayaj. > is(%) Vi, s (3.4)
j=1
> Ay > wi(d Ay — k) Vi (3.5)
j=1 i=1
zs € {0,1} Vi, s (3.6)
kot >0 (3.7)
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Model parameters arez number of genesg number of clustersd;; shortest path
distances between genesnd j, A;; is the adjacency of genesand; , 1 if they are
connected, O otherwise. Model variables afg; which are 1 if gene i is assigned to
cluster s, 0 otherwiseD, . is the length of the largest diameter among &}, is the out
connection number of the gene which has the maximum numbasrofections with the
genes outside its cluster. 3.1 is the maximum diameter @inkt 3.2 ensures that each
gene is assigned to exactly one cluster. 3.3 ensures thasgichas at least one gene.
3.4 ensures that a gene has at least as many connectionsen#b mside its cluster as
the number of connections with genes outside its clustre&ablishes the relation with
objective function. 3.6 and 3.7 ensure thatare binary and?“ is real, greater than 0.

At the beginning of this research, first the model was dewedofyhe model was solved
using small data sets and two social networks data sets.eBlés led to the development
of a heuristic to solve the model because of the high dimeasitature of biological data.
However, since the model had tight constraints, such asuh#ar of connections of a
gene inside its clusters should be at least equal to the nuaflm®nnections with other
clusters, B-MST emerged independently from the model. Going this MIP model with
a traditional clustering model and developing algorithmislgd by the model are intended
for future studies. Both the model and algorithms can beiegpd relational data in fields

such as biology and sociology.
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