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A new minimum spanning tree (MST) based heuristic for clustering biological data is

proposed. The heuristic uses MSTs to generate initial solutions and applies a local search

to improve the solutions. Local search transfers the nodes to the clusters with which they

have the most connections, if this transfer improves the objective function value. A new

objective function is defined and used in the heuristic. The objective function considers

both tightness and separation of the clusters. Tightness isobtained by minimizing the max-

imum diameter among all clusters. Separation is obtained byminimizing the maximum

number of connections of a gene with other clusters. The objective function value calcu-

lation is realized on a binary graph generated using the threshold value and keeping the

minimum percentage of edges while the binary graph is connected. Shortest paths between

nodes are used as distance values between gene pairs. The efficiency and the effectiveness

of the proposed method are tested using fourteen different data sets externally and biolog-

ically. The method finds clusters which are similar to actualones using 12 data sets for
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which actual clusters are known. The method also finds biologically meaningful clusters

using 2 data sets for which real clusters are not known. A mixed integer programming

model for clustering biological data is also proposed for future studies.

Key words: clustering, optimization, heuristics, networks, integer programming
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CHAPTER 1

INTRODUCTION

Clusteringin biology has a history that goes back to Aristotle’s attempt to classify liv-

ing organisms [6]. Today, clustering genomic data stands out as an approach to deal with

high dimensional data produced by high throughput technologies such asgeneexpression

microarrays [94]. Biological data were limited to DNA sequence data before thegenome

age in the 1980s [75]. Nowadays, terabytes of high throughput biological information are

generated with the advent of new technologies, such as microarrays,eQTLmapping, and

next generation sequencing. Now, a need for exploiting computational methods exists to

analyze and process such amounts of data in depth and in different ways to address com-

plex biological questions regarding gene functions, gene co-expression, protein-protein

interactions (PPI), personalized drug design, systems level functional analysis of plants

and animals, and organism-environment interaction. This fact has given birth to disci-

plines like bioinformatics, computational biology, andsystems biology.

In physics, before mathematical models were incorporated;i.e., before Newton, the

discipline was stamp collecting (i.e. descriptive). Incorporation of mathematical models

changed physics into a predictive science. In a similar manner, incorporation of computa-

tion into biology is changing the discipline from being a descriptive science to a predictive

science. One of the prediction methods used in biology to analyze the high throughput

1
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data is clustering. As a data mining method, clustering of genomic data was well studied

during the last decade. Clustering is also a well known and studied problem in the op-

erations research (OR) field. However, clustering of genomic data is relatively not well

studied by the OR community, although data mining techniques have been used in market

segmentation and facility location problems, for example.

Moreover, aspects of biological theories can be modeled with OR tools. One of these

aspects is that a small subset of genes are typically involved in a particular cellular pro-

cess of interest, and a cellular process happens only in a subset ofsamples [72]. Another

aspect is that genes of the same pathway may be induced or suppressed simultaneously or

sequentially upon receiving stimuli [163]. A third aspect is that most biologists assume

an approximatelyscale-free topology, or asmall world property, for networks constructed

from gene expressiondata [159]. Hence, one may say that genes with highconnectivity

are much fewer in number than genes with low connectivity [144]. Thus, this chapter

discusses many diverse approaches and algorithms that currently exist for clustering of

genomic data from an OR perspective by introducing background in molecular biology,

and presenting clustering approaches and techniques. The chapter is organized as follows:

Section 2 gives concise information about molecular biology and relevant disciplines; Sec-

tion 3 discusses the clustering of genomic data problem, andprovides a problem definition

and data representations; Section 4 reviews recent algorithms used for clustering genomic

data; Section 5 concludes and suggests future research directions for the operations re-

search community; and section 6 provides the glossary that includes definitions of the

italicized words and phrases throughout the text.

2
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1.1 Background Information about Molecular Biology

The essential cellular molecules for a biological system tofunction and interact with

its surrounding include DNA, RNA, proteins, andmetabolites, all of which are under phys-

iological and environmental control. Many different interaction layers exist among these

molecules such as PPI networks, i.e., interactomes, gene regulatory networks (GRNs),

biochemical networks, and gene co-expression networks. A holistic picture of these inter-

actions is being studied through systems biology.

Based on the central dogma of molecular biology, DNA transcribes into RNA, and

RNA translates into proteins, some of which then serve as catalysts in the production of

metabolites. A gene is expressed upon receiving the transcriptional signal. Genes have

activators andrepressors. Genes reveal no or low expression values without activators.

Repressors block gene expression, even in the presence of activators. Transcription factors

(TFs) are activator or repressor proteins produced by genes. TFs bind toregulatory sites

and turn them on to transcribe RNA or off. Genes may show cascade interactions. For

example, the product of one gene may increase or decrease thetranscription rate of the

other, and this process may continue downstream including temporal or causal order of

molecular events.

It is often preferred to analyze thousands of genes’ dynamics together rather than one

at a time. The DNA microarray (Figure 1.1) has been one of the commonly used technol-

ogy to measure thousands of gene expressions simultaneously[94], and microarray data

have been stored in public databases such as the Gene Expression Omnibus (GEO) for fur-

ther analysis. For example, Affymetrix GeneChip Mouse Genome4302.0 Array provide

3
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45,000 probe sets to analyze expression levels of more than 39,000 transcripts.Feature

size is 11µM . 11 probe pairs per sequence are used.

Figure 1.1

A microarray chip produced by Affimetrix, courtesy of Affymetrix.com

The data extracted from microarrays or a similar technologyis analyzed using areverse

engineeringapproach. A simplified framework of reverse engineering methodology for

modeling GRNs from gene expression data is shown in Figure 1.2, which is adapted from

[85]. However, it is a challenging task to infer about GRNs because expression data are

high-dimensional, complex, and non-linear. Further complicating the inference is that,

dynamic relations exist among thousands of genes, expression data involvenoise, and the

sample-gene ratio is normally very small [161] since the array chips corresponding to

samples are expensive. Co-expressed genes show coherentexpression patterns, indicating

that they may have similar functions [94] or co-exist in a pathway. However, different

4
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external conditions may trigger a gene to be expressed similarly with different group of

genes [94]. Genes with similar expression patterns are morelikely to regulate each other

or to be regulated by a parent gene [104]. Here, the problem ofquantifying the relations

between genes arise.

External Information
from Databases like

GO

Structural Information
-Connectivity
-Density

Modelling
-Parameters
-Simulation

Evaluation

Data set

Figure 1.2

Reverse engineering to infer about the extracted data

A powerful clustering approach as well as a predictive modelmay detect patterns or

relationships in expression data [94]. However, a predictive model should be guided by bi-

ological facts, meaning that results of predictive models should be validated by biological

knowledge. On the other hand, biological experiments should be guided by computational

methods to make the best use of biological data and reduce experimental and time costs

(Figure 1.3). Online databases exist to facilitatevalidation of the results obtained from

5
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predictive models. Incorporation of the database knowledge to modeling GRNs is essen-

tial for more accurate results or for comparing the model to reality.

Figure 1.3

Biological experiment and validation work flow

1.2 Problem Definition and Representations of Genomic Data

Clustering generates individual groups of data called apartition, rather than assigning

objects into the groups already known as inclassification[9]. A partition is defined as

follows:

P = {c1, c2, ..., cs} wheres is the number of clusters.

∑s
i=1 |ci|=n wheren is the number of objects and|ci| is the cardinality ofclusteri

6
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X = {x1, x2, ..., xn} is the set ofn objects andY ={y1, y2, ..., yn} is the set ofn patterns

whereyi ∈ Rd and d is the number of samples. The clustering problem is finding a

partition that has clusters with objects having similar patterns.

There is no universally accepted definition of a cluster. However, objects in a cluster

should be similar or coherent and objects in different clusters should be dissimilar. In

other words, similarity within a cluster is maximized, and similarity between clusters is

minimized.

Clustering is often used in the genomic data analysis process. Genomic data analysis is

an integrated process that comprises low-level and high-level analysis. Cluster analysis for

genomic data consists of three main steps: 1) pre-processing the data so that the clustering

algorithm can use the data as an input; 2) using a clustering algorithm with an appropriate

distance measure; and 3) using an index and/orbiological databaseto validate the quality

of the clusters found.Data pre-processingis essential before clustering, since it affects

clustering results. The effects of normalization and pre-clustering techniques have been

demonstrated on clustering algorithms [133], so have the effects of filtering methods [140].

The distance measure can also affect the results from a clustering algorithm [62].

Although there are many problems associated with cluster analysis and there are many

biological data types, this chapter mainly focuses on clustering algorithms as applied to

microarray data unless otherwise mentioned. As an illustrative example, we use a breast

cancer microarray data set. The data set is pre-processed [157]. Then 49 samples corre-

sponding to 4 different collection of tumors consisting of 1213 genes each is used. The

pre-processed expression image is shown in Figure 1.4. Color densities and corresponding

7
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expression values are shown on the right vertical color bar of the Figure. The samples are

shown on the y axis while the genes are shown on the x axis.

Figure 1.4

Image plot of expression values

Since the real partition of the samples is known, clusteringof samples is desired for

the purpose of external validation. K-means (see section 4.1) as applied in R base package

is chosen for clustering. TheEucledian distancematrix between samples and the number

of clusters, i.e., 4, are inputs to the K-means algorithm. The partition generated by K-

means and the real partition are shown in Table 1.1. It shouldbe noted that the order of

the numbers identifying clusters of the real partition may not be the same in the generated

partition. The last step of the cluster analysis is validation using theC-rand index. The C-

8
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rand value found is 0.343. This means that K-means could not find a partition very similar

to the real one since the best C-rand value would be 1.

Table 1.1

Partition of samples, S1:S49, into four clusters

1 to 24 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24

K-means

Real

25 to 49

K-means

Real

4 4 4 2 1 1 2 2 2 2 3 3 1 1 1 1 4 4 3 4 4 2 1 1

1 1 1 4 4 4 4 1 4 4 3 3 4 4 4 4 3 3 3 1 3 4 4 4

S25 S26 S27 S28 S29 S30 S31 S32 S33 S34 S35 S36 S37 S38 S39 S40 S41 S42 S43 S44 S45 S46 S47 S48 S49

4 1 1 1 2 3 2 4 4 2 2 2 1 4 4 4 1 1 1 1 1 2 1 1 2

1 4 4 4 4 3 2 1 1 1 2 2 2 1 1 1 2 2 2 4 2 4 2 2 2

1.2.1 Quantification of Relations

Distance measures are used for defining relationships between the biological molecules

of interest. Clustering algorithms use this relationship in different ways. Hoeffding’s

D meausure outperforms the others in quantifying non-linear associations when Person

correlation, Spearman correlation, and Hoeffding’s measure were compared for gene ex-

pression association analysis [45]. Bandyopadhyay and Pal[13] propose new distance

measures based on Euclidean andManhattan distancemeasures wherenormalizationis

dependent on the experiment type, i.e., samples. Balasubramaniyan et al. [10] also use a

local shape based distance metric based on Spearman rank correlation. The metric is used

to identify local similar regions in gene expression profiles.

Pairwise relations between genes are often preferred for quantification, because it is

computationally less costly than stochastic approaches where a relation is considered con-

9
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ditionally to other relations. Correlations or distance measures, e.g., Euclidean distances

between gene pairs are calculated using the expression data, and then the resulting data

matrix is used in a clustering algorithm to find the clusters of genes. However, use of

direct distance measures between pairs of genes is somewhattraditional as opposed to

transitive distance measures used between genes. Traditional use of a distance measure

employs the “Guilt-by-Association” assumption that geneshaving similar expression val-

ues generally have similar functions and the genes with dissimilar expression values do not

have similar functions [164]. The traditional approach is “Guilt-by-Association” because

a biological function is often the result of many genes interacting with each other rather

than a result of a simple pairwise relation [164]. However, transitive distance implies that

there is at least one path, not necessarily of length 1 as in a pairwise relation, between two

genes, and the length of this path is the distance between them. Researchers proposed that

a transitive co-expression analysis applying a shortest path distance between two genes

(Figure 1.5) gives biologically meaningful results, rather than a direct pairwise distance

measure [162, 164]. Zhu et al. [164] use a hybrid distance matrix having both direct and

shortest-path distances forclustering. Phan et al. [116] also use transitive directed acyclic

graphs for representation of expression patterns. Once thedata are clustered based on a

distance measure, validation of the clustering algorithm’s performance is essential.

1.2.2 Validation of the Partitions

Before dealing with validation of the partitions generatedby clustering algorithms,

there are sub-problems to consider:filtering mechanisms to be used for the data, algo-

10
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Figure 1.5

Transitive distance - the distance between genes G1 and G5 is8 rather than 9

rithm to be used, the number of clusters, distance metric to be used if it is used by the

clustering algorithm, cut-off height (level) for thedendrogramof genes in case a hierar-

chical clustering is used, approach to be used like aggloramative or divisive, validation

methods, and measures for generated clusters. These are some of the aspects that affect

validation results.

Outputs of clustering algorithms need validation to check whether the genes in the

same clusters have biological relations or not. Clusters should make sense biologically.

Clusters should be reliable, not formed by chance. The stability of a clustering algorithm,

the validation of the generated cluster usingbiological databases, and the comparison with

other algorithms are important aspects to measure reliability. Stability can be assessed by

11
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both sensitivity of the algorithm to the user-specified parameters and small modifications

to the data sets [4].

There are mainly four different ways to validate the performance of a clustering al-

gorithm: 1-Visual validation: inspects if the algorithm detects a special structure of the

data, e.g., number of clusters may be detected on the 2D graphics. For example, Figure

1.6 implies that the optimal number of clusters is two; 2-External validation: requires the

knowledge of the real partition, e.g., C-rand or pre-definedstructure of the data. 3-Internal

validation: uses the features of the partition such as compactness, e.g., ensuring that vari-

ance within clusters are small and examining the separationof clusters, e.g., single linkage,

average linkage, complete linkage; 4-Biological validation: uses biological annotations to

see if the genes in clusters are enriched for biological terms significantly.

Each clustering validation technique has its own bias towards a given clustering crite-

rion [41]. Ensemble and multi objective clustering approaches [41] are used to address the

problem of being biased towards a particular objective or a clustering criterion. A good

clustering algorithm may or may not depend on prior knowledge, or many user-defined

parameters. Jiang et al. [72] propose that the algorithm should be able to extract useful

information, detect the embedded and highly connected structure of genomic data, and

provide graphical representation of the cluster structure. Functions of some genes are

published in relevant databases and genes with known similar functions may guide the

clustering by being assigned to the same cluster. This partial knowledge can also be used

as an input for a clustering algorithm with the expectation that the resulting clusters will be

more biologically meaningful [72]. For example, Cohen et al. [31] propose an algorithm

12
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Figure 1.6

2D Graphics of Clusters Generated by K-means

that integrates semantic similarities from ontology structure to the procedure of getting

clusters out of a dendrogram.

1.2.3 Representation of Expression Data

Gene expression data is usually represented as ann×m matrix wheren is the number

of genes andm is the number of time points or samples. Microarray features, or gene

transcripts, are the rows of the expression matrix and are represented as vectors. Gene

expression data sets are comprised of gene expression levels over time points, also called

time course data (Table 1.2), or samples, such as control vs.treated. Clustering may

be performed by grouping genes over samples or samples over genes. Since the number

of genes is normally thousands and many of the genes have low or invariant expression

13
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values, filtering gene expression data to reduce the dimension of then×m matrix is often

necessary. Gene interactions may be represented by graphs using an adjacency matrix.

A graphG consists of verticesV (G) that represent genes, edgesE(G) that represent

relations between genes. Assuming a loopless, simple graphadjacency matrixA(G) has

elementsai,j equal to 1 ifi has relation withj, 0 otherwise. If the corresponding graph

is not relational, i.e, binary then a weightwi,j is associated with the edges showing the

strength of the relation betweeni andj.

Table 1.2

A Sample Microarray Data [69]

Gene Name 0HR 15MIN 30MIN 1HR 2HR 4HR 6HR 

EST W95908 1 0.72 0.1 0.57 1.08 0.66 0.39

SID487537 EST 
AA045003

1 1.58 1.05 1.15 1.22 0.54 0.73

SID486735 1 1.1 0.97 1 0.9 0.67 0.81

. . . . . . . .

. . . . . . . .

. . . . . . . .

MAP kinase 
phosphatase-1

1 2.09 3.37 5.52 4.89 3.05 3.27

MAP kinase 
phosphatase-1

1 1.52 4.39 7.03 5.45 2.93 3.91

MAP kinase 
phosphatase-1

1 2.25 4.67 7.94 5.94 3.76 4.46

G
e
n
e
s

Expression Values

Clusters are generated by clustering algorithms that use a data representation as an

input. The way the biological data is represented, whether it be a network, matrix, vector,

may ease the computation for the problem on hand. For instance a naive hierarchical

14
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clustering (HC) algorithm has time complexity ofO(n3), however the time complexity

may be reduced toO(n2 log n) using apriority queuedata structure [96]. Representation

of gene expression data as ann×m matrix or network may help a researcher focus on the

genes of interest by making use of matrix theory and graph theory.

Complex interactions between molecular components of a biological cell are some-

times modeled with graph structures to get support from graph theory. Visualization and

computational representation of these interactions as networks enables wide range of ap-

plications [131]. Models of GRNs fall between abstractnesslike Boolean networks, or

relevance networks, and concreteness, including biochemical interactions with stochastic

kinetics [85]. Abstract models are scalable to large networks but are further from reality

whereas concrete models are not scalable to large networks but more accurately reflect

biological reality. Hence there is a trade-off between scalability and concreteness. Net-

work models can be discrete or continuous. Deterministic orprobabilistic Boolean net-

works and Bayesian networks have discrete variables whereas the neural network models

and differential equations based models use continuous variables. Abstract networks such

as co-expression networks use edges from hypothetical inference, whereas concrete ones

such as PPI use edges inferred from physical interactions [164]. Chen et al. [24] construct

a network for experimentally detected PPI. Nodes representproteins and edges are the

interactions with edge weights calculated based on a predefined formula. The authors pro-

pose a novel measurement to assess the reliability of PPIs using topological features of the

network, since PPI data involves high false positive rates and also develop an algorithm to

measure reliability efficiently in PPI networks.
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There may be different relations between the molecular components. For instance,

the components may interact with each other, one of the components may regulate the

expression of the other, inhibit, or stimulate the activityof the other [38]. All these re-

lationships can be represented using networks, or graphs. Graph structures are used to

suggest some biological questions about discovering potential drug targets. Graph topol-

ogy reflects functional relationships and neighborhoods ofgenes [38]. Network models are

a very popular way of formalizing available knowledge of cellular systems in a consistent

framework [16]. For instance,factor graphs are minimal graphs for inferring expression

data [16]. Expression data may be integrated withtranscription factor(TF) binding data

to further infer interaction networks, and time course expression data may be integrated

with physical interaction networks to identify pathways [16].

1.3 Algorithms Used for Clustering Genomic Data

The algorithms used in clustering gene expression data are usually grouped into two

classes: partitional and hierarchical. However, clustering algorithms may also be grouped

based on the representation of data, relationship between clusters, distribution of the data,

and other properties. For example, some of the classes of algorithms include flat, or

partition based clustering, hierarchical clustering, biclustering, model based clustering,

metaheuristic clustering, fuzzy clustering, optimization based clustering, network based

clustering, and ensemble clustering. Of course, these groups may have intersections, and

there may be hybrid approaches Chipman and Tibshirani [26].Clusters may be exhaus-

tive, meaning that each object is assigned to a cluster, or non-exhaustive, meaning that
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some objects may be assigned to no cluster. Exclusive clusters are non-exhaustive ones to

which an object is either assigned or not [96]. Objects are assigned solely to one cluster

in hard clustering; whereas soft clusters, sometimes called overlapping clusters, may have

common objects with non-negative value memberships. For different definitions of hard,

soft, and partitional clustering see [96]. Different typesof clustering algorithms are de-

fined based on diverse features, such as representation of data, relation between clusters.

The following subsections reviews the most recent and common methods.

EBSCO host and PubMed databases were investigated for obtaining the articles used

in the review. However the articles utilized were not limited to these databases. “Cluster-

ing method” and “microarray data” or “gene expression data”inputs were used in EBSCO

host. There were 250 results, 29 relevant. “Clustering of gene expression data” input was

used in PubMed. 6706 results were pulled. The results were filtered based on being re-

cent, i.e., after 2005, and having potential contribution to the review being comprehensive

enough. More than 100 articles were used for the review. The following sections present

classifications and review clustering algorithms used for biological data analysis based on

the papers from the databases. Since one of our objectives isto increase the interest of OR

researchers, more details are provided on some classes of algorithms, such as optimization

based one.

1.3.1 Flat Clustering Algorithms

In flat clustering, objects are partitioned based on a (dis)similarity metric. K-means is

perhaps the most widely used method. K-means is a randomizedalgorithm which gener-
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ates cluster centers randomly and assigns objects to the nearest cluster center. The algo-

rithm modifies the location of the centers to minimize the summation of squared distances

between objects and their closest cluster centers. Richards et al. [119] report that K-means

performed faster and resulted in more biologically enriched clusters compared to three

other methods. On that study K-means was used to cluster human brain expression data

sets which had approximately 20,000 genes and 120 samples. Bohland et al. [17] use K-

means to cluster all left hemisphere brain voxels,25, 155× 271 matrix is used as an input

for the algorithm. Sharma et al. [129] use a two-stage hyperplane algorithm applied in a

software package called HPCluster. The first stage reduces the data and the second stage is

the conventional K-means. The algorithm can handle 44,460 genes without failure. [142]

develop a clustering method which doesn’t force all the genes into clusters. The method

employs a truncation of the clustering tree first, and then applies the K-means algorithm

to avoid K-means being trapped in local minimum. The method is applied on both sim-

ulated and embryonic stem cell data. The authors supply a C library and a package to

implement the method and visualize data. Tseng [141] develops a K-means derivative,

applying a penalty to avoid scattered objects being assigned into clusters and weights to

incorporate prior information. The developed method is used for both mass spectrometry

and microarray data sets.

K-means requires specification of the number of clusters before clusters are generated.

K-means is also sensitive to noise that is prevalent in gene expression data [72]. Further-

more, a partition generated by K-means may not be globally optimum since it relies on

randomly chosen initial objects. Hence K-means is sensitive to initial partitions; it may
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be trapped in local optima; and it is applicable to data with only spherical-shape clusters

[149], which is not always the case for biological data. The time complexity of K-means

algorithm isO(i k n m) [96] wherei is the number of iterations,k is the number of

clusters,n is the number of objects andm is the dimension of an object.

Partitioning Around Medoids (PAM) [76] is also a widely usedflat clustering algo-

rithm. PAM computes medoids for each cluster. PAM is computationaly more costly than

K-means since it requires pairwise distance calculation ineach cluster. Wang et al. [145]

use the system evolution principle of thermodynamics basedon PAM to predict the num-

ber of clusters accurately. Huang and Pan [66] incorporate agene’s function knowledge

into a new distance metric. Distances between genes with known similar function are

shrunk to 0 before the genes are clustered using K-medoids orthe PAM algorithm; then,

remaining genes are assigned to existing clusters and/or new clusters.

Self-Organizing Map (SOM) is another flat clustering approach based on neural net-

work methods widely used in gene clustering. Ghouila et al. [48] employ a multi level

SOM based clustering algorithm in the analysis of macrophage gene expression data. SOM

also requires the number of clusters and the grid structure of neurons as inputs. SOM maps

high dimensional data into 2D or 3D space. The potential of merging distinct patterns into

a cluster can make SOM ineffective [72].

Knowing or predicting the number of clusters correctly for aflat clustering algorithm

affects the quality of the clusters. Jonnalagadda and Srinivasan [73] develop a method to

find the number of clusters in gene expression data. They evaluate different partitions from
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a clustering algorithm and find the partition that describesthe data best. They use an index

measuring information transfer for additional clusters.

1.3.2 Hierarchical Clustering Algorithms

Hierarchical clustering (HC) algorithms generate dendrograms that show relationships

of objects and clusters as hierarchies (Figure 1.7). HC algorithms can be divided into two

groups: agglomerative and divisive. In agglomerative clustering, all the objects begin in

individual clusters. Then, the object pair with the highestsimilarity is found and merged

to be included in the same cluster. The objects then merge, oragglomerate iteratively, until

only one cluster exists which includes all the objects. The merging process can be stopped

at any time with a stopping criterion. A complete run of an agglomerative clustering

algorithm produces a complete graph where each node has relations with other nodes and

a dendrogram where relationships between objects appear. Divisive HC methods work

contrary to agglomerative HC methods. Divisive clusteringmethods iteratively divide the

complete graph into smaller components by finding the pair ofobjects that have the lowest

similarity and removing the edges between them. Divisive clustering can be represented

by a dendrogram that gives smaller components at each successive split of the network.

The dendrogram’s branches are the clusters. These branchesalso give information about

similarity between clusters.

Level Selection MethodsOne challenge encountered in HC is selection of the level that

is used to cut the dendrogram through a number of branches corresponding to the number

of clusters. Wild and Blankley [148] test nine cluster levelselection methods based on
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Figure 1.7

Dendrogram of the data generated for Figure 1.6

their lack of parametrization and simplicity. Neither of these methods outperform the

others consistently on all data sets used. Kelley et al. [77]present an automated method

for cut-off level selection to avoid the dangers of using a fixed valued cut-off. Zahoránszky

et al. [158] present a new cluster selection method for HC. The method does not require a

similarity measure and is suitable for data with a graph representation. It relies on cohesive

clusters in which all pairs of objects are similar to each other.

Langfelder et al. [82] propose an algorithm that defines clusters from a hierarchical

tree. However, they overcome the inflexibility of the fixed-height cut-off choice of the

dendrogram. Their algorithm adapts to the shape of the dendrogram, is capable of detect-

ing nested clusters, and can combine the advantages of hierarchical clustering and PAM.

However, it is stated that optimal cutting parameters and estimation of number of clusters

in the data set are still open research questions. They applythe algorithm on both hu-

21



www.manaraa.com

man gene expression and simulated data. Although the algorithm has many user defined

parameters, it is reported that it works well with default settings compared to PAM and

normal HC.

There are a number of HC applications for biological data. Liang and Wang [88]

propose a dynamic agglomerative clustering method and apply this on leukemia and avian

pineal gland gene expression data. The numerical results show that the proposed method

is convenient for data sets with or without noise, which is defined as scattered, singleton

or mini-cluster genes. The method collects scattered genesin a cluster and groups other

clusters dynamically and agglomeratively.

HC algorithms are not robust to noise, and they have high computational complexity

[72] which isO(n3) [96] wheren is the number of objects. They are “greedy,” meaning

they combine the most similar two objects at the first step, and the following steps are

affected by the initial step and so on.

HC and K-means algorithms introduced in the previous section are root algorithms

upon which many algorithms are built. Comparison guides thechoice of the clustering

algorithm [139, 137]: one should look at root clustering approaches and the desired fea-

tures required for the application in which one of the root approaches is used. A review of

root clustering approaches, partitional, K-means, or hierarchical and improved algorithms

based on the root approaches are presented in [6, 36, 33].
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1.3.3 Network Based Clustering Algorithms

HC algorithms make use of data represented as networks. However, network based

clustering algorithms are not all hierarchical. As mentioned earlier, biological data may be

represented using networks. Hence, many clustering algorithms use network data struc-

tures to cluster biological data sets. For example, gene expression data may be regarded

as a complete network where the genes are the nodes of the network, and pairwise corre-

lation values obtained from expression data are the edge weights of the node pairs. Hence,

clustering this network data is a graph partitioning problem. Algebraic graph theory may

be employed for the purpose of clustering a network. One algebraic graph theory tool

is spectral clustering, a form of graph partitioning where the eigenvalues and eigenvec-

tors in the Laplacian matrix, the difference between the adjacency and degree matrices,

are usually used to reduce the dimension of the similarity matrix. The new matrix with

reduced dimensions is used as an input for K-means or anotheralgorithm [79]. Higham

et al. [60] formulate a discrete optimization problem that results in a class of spectral clus-

tering algorithms. They test the performance of the spectral algorithms on three different

microarray data sets involving different types of diseases. Higham and Kalna [59] present

spectral analysis oftwo-signed microarray expression data. The time complexity of a

general spectral clustering algorithm isO(n3) because of the eigenvalue computations.

Clustering based on each node’s neighbors is also widely used for genomic data. Hut-

tenhower et al. [68] propose a graph based clustering algorithm called nearest neighbor

networks (NNN). This algorithm first generates a directed graph with each gene connected

to a specified number of nearest genes. Then, the graph is converted to an undirected one

23



www.manaraa.com

by keeping only the genes having a bidirectional relationship. Overlapping cliques of a

specified size are merged to produce preliminary networks. Then, the preliminary net-

works containing cut-vertices are split, keeping the copies of the cut-vertices. They also

introduce a software implementation of the algorithm proposed. Mete et al. [103] propose

an algorithm to find functional modules from large biological networks. The algorithm

assigns nodes to the same cluster based on how they share common neighbors. Using

three steps, the algorithm detects clusters,hubs, or most connected nodes, and outliers of

the network. The first step checks every vertex for being core, having a defined number of

neighbors, or not. If it is a core vertex, a new cluster is expanded. Otherwise, the vertex

is labeled as a non-member. In the second step, the algorithmchecks structure-reachable

vertices, a specified similarity measure between vertices,from a core vertex. The third

step classifies non-member vertices ashubs, if isolated vertices have edges connecting to

two or more clusters, or as outliers. The worst case running time of the algorithm isO(n2),

however it reduces toO(n) if the graph is random.

Using minimum spanning trees of a network to cluster biological data is practical since

edge removal divides one group of genes into two groups directly. Xu et al. [151] represent

gene expression data as a minimum spanning tree (MST). Clusters are then found by three

algorithms that use different objective functions to generate sub-trees. One objective is

partitioning the tree into a specific number of sub-trees andminimizing the total edge

distances of all sub-trees. The second objective is to minimize the distance between the

center of each cluster and its objects. The third objective is similar to the second, except

that a representative point is used instead of a center. The study reports that not much
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information is lost using a tree representation of the data sets. They also propose a number

of clustering algorithms for MST, where two of them guarantee global optimality for non-

trivial objective functions. The algorithms are implemented as a computer software which

is available upon request from the authors.

Community structure finding algorithms use network structure and attempt to optimize

a measure calledmodularity [113]. Higher modularity values are desired. Community

structure finding consists of dividing the network into groups according to certain struc-

tural information, likebetweennessof edges, rather than similarity information normally

used in traditional clustering approaches. In Newman and Girvan [113] and Girvan and

Newman [49], the edges responsible for connecting many pairs of vertices, not the edges

having the lower weights, are removed to find communities. With this technique, one can

count how many paths proceed along each edge with the expectation that this number will

be largest for intercommunity edges, the betweenness measure. The simplest example

of the betweenness measure is based on the shortest paths. Communities are the sub-

networks where the edges within have high density connections but the edges between

have low density connections. Communities appear to have a hierarchical structure in

most real world contexts [29]. For instance, people make up departments and departments

make up a university, just like words make up sentences, sentences make up chapters, and

chapters compose books. In that sense, community finding is similar to an HC approach.

HC here is equivalent to starting with the network of interest, attempting to find the least

similar connected pairs of vertices, and removing the edgesbetween them iteratively.
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Forming communities that maximize modularity is desired. For the modularity for-

mulation, see the objective function of model (4) in the “Optimization Based Algorithms”

section. Newman [112] expresses modularity in terms of eigenvectors of the modularity

matrix of the network and proposed an algorithm which has a running time ofO(n2 log n)

to divide the network into clusters. Ruan and Zhang [123] introduce a heuristic that com-

bines spectral graph partitioning and local search to optimize modularity, and a recursive

algorithm to deal with the resolution problem, that is beingunable to find clusters smaller

than a scale, in network community detection. The algorithmhas a higher weighted match-

ing score for protein community complex than [112]. The algorithm is also faster than

[112] for networks having more than about 1,500 vertices. Clauset et al. [30] present a

fast hierarchical agglomerative algorithm to detect community structure in very large net-

works. The algorithm has a time complexity ofO(m d log n) wherem is the number

of edges,n is the number of vertices andd is the depth of the dendrogram. Schwarz

et al. [127] use this algorithm to resolve functional organization in the rat brain. New-

man [109] introduces a method of mapping weighted graphs to unweighted multigraphs,

or graphs with multiple edges, to be able to use community structure finding algorithms

[113] for weighted graphs. Gómez et al. [51] present a reformulation of modularity to

be able to work on weighted, directed, looped networks defined from correlated data. It

is also mentioned that other methods such as clique percolation [115] may be employed

for a similar task with a relevant adaptation. The clique percolation method was used to

find overlapping communities in yeast protein interaction data. Stone and Ayroles [132]

propose an algorithm to maximize modularity that modulatesweights of the edges of bi-
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ological data, represented as a graph. The algorithm is applied on human and Drosophila

melanogaster data, compared with a agglomerative HC and three spectral clustering algo-

rithms using 10,000 simulated data sets. The proposed method has the highest percentage

of correctly clustered objects and correctly separated objects for a specified number of

clusters compared to others. The authors mentioned that Matlab code of the algorithm is

freely available.

Label propagation is a recently developed method for findingcommunity structure. It

defines a community as a set of nodes such that each node has at least as many neighbors

in its own community as in any other one. In the initial stage of the method, all nodes

form a distinct community where each node has its own label. Then, at each time step, the

nodes join with that community to which the largest fractionof their neighbors belong, by

adopting the corresponding label. If there are multiple choices, a random decision is made

with uniform distribution [138].

Lancichinetti and Radicchi [81] introduce a class of benchmark graphs to test the per-

formance of two community structure algorithms. For a review of algorithmic methods

to detect community structure in networks, see [110]. Fortunato [44] exposes commu-

nity detection in graph thoroughly from definition of basic elements of community finding

problem to the real world applications.

There are other graph based clustering approaches [64, 18].To ease the use of graphs

in solving problems, libraries such as The Boost Graph Library (BGL) for C++ and

igraph[32] have been developed. The igraph library can be embedded into higher level

programs or programming languages like C/C++, Python and R [32]. NetworkX [54]
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is a Python-based package for complex network research. There are visualization and

exploratory tools for gene clusters to be interpreted more easily. Cytoscape, and the gcEx-

plorer [126], [125] package for R programming language are designed for such a purpose.

Figure 1.8 illustrates two different layout for an expression data generated by Cytoscape.

They are hierarchical and spring embedded layouts for protein-protein and protein-DNA

interactions in the yeast galactose metabolism. Nodes and edges represent the proteins and

the protein-protein interactions.

1.3.4 Optimization Based Algorithms

Optimization based algorithms may be more attractive to theOR community since

optimization is at the heart of OR. Glover and Kochenberger [50] propose a new modeling

and solution methodology for clustering that can be used forfinding groups, or modules,

in genomic data. Modules can be regarded as cliques of similar objects. They model the

clique partitioning (CP) over nodes formulated as in (2), rather than over edges as in (1):

Maximize
∑

(i,j)∈E

wijxij

subject to

xij + xir − xjr ≤ 1 ∀i, j, r ∈ V, i 6= j 6= r,

xij ∈ {0, 1} ∀i, j ∈ V. (1.1)

Maximize
n−1
∑

i=1

n
∑

j=i+1

wij

Kmax
∑

k=1

xikxjk
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subject to

Kmax
∑

k=1

xik = 1 ∀i ∈ V, (1.2)

xik ∈ {0, 1} ∀i ∈ V, k = 1, ..., Kmax. (1.3)

In the first formulation (1),xij is equal to 1 if the edge (i, j) is in the partition; 0

otherwise. Thewij coefficient is the unrestricted weight of an edge between node i and

nodej. E andV represent the set of edges and set of vertices, respectively. In the second

formulation (2),xik is equal to 1 if nodei is assigned to cliquek. Kmax is the maximum

number of cliques or clusters allowed,n is number of nodes, andwij is defined as in

formulation (1). Formulation (2) has fewer variables and number of constraints, compared

to (1). Although (2) is a quadratic model, it can be used for large instances of the CP

problem. This model is similar to the one in [108] except that[50] uses the maximization

objective.

Nascimento et al. [108] used a greedy randomized adaptive search procedure (GRASP)

based clustering algorithm for clustering different data sets of microarrays which was

guided by an integer programming model similar to (2).

Clustering based on the modularity measure introduced in “Network Based Algo-

rithms” section uses heuristic algorithms. Maximizing themodularity measure is also

used as an objective function of the integer linear program (ILP) in [19] as follows:

Maximize
1

2m

∑

(i,j∈V )

(Eij −
deg(i)deg(j)

2m
)xij
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subject to

xii = 1 ∀i,

xij = xji ∀u, v,

xij + xjk − 2xik ≤ 1 ∀i, j, k ∈ V,

xik + xij − 2xjk ≤ 1 ∀i, j, k ∈ V,

xjk + xik − 2xij ≤ 1 ∀i, j, k ∈ V,

xij ∈ {0, 1}∀i, j. (1.4)

The decision variablesxij are defined as 1 if nodesi andj are assigned to the same

cluster, or 0 otherwise.Eij is 1 if there is an edge between nodesi andj, 0 otherwise.

deg(i) and deg(j) are the degrees of nodesi and j. m is the total number of edges.

Equalities and inequalities are reflectivity, symmetry, and transitivity constraints. The

number of variables can be reduced to
(

n
2

)

, and the number of constraints can be reduced

to
(

n
3

)

by eliminating redundant variables and constraints wheren is the number of nodes.

Agarwal and Kempe [1] used the same ILP model with a differentvariable definition. To

solve their model, they use a linear programming (LP) rounding algorithm and a local

search proposed by Newman [111]. LP rounding provides upperbound. Chen et al. [25]

uses LP to study the community structure of networks.

Lee et al. [84] propose a graph-based relaxed optimization approach. They model clus-

tering as a quadratic program. Their method automatically determines data distributions

without a priori knowledge about the data that makes it superior to spectral clustering

approach.
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Tan et al. [134] propose a novel clustering approach based onmixed integer nonlinear

programming (MINLP). They convert their model to mixed integer linear programming

(MILP) by introducing new variables and constraints. They apply a generalized Benders’

Decomposition method to obtain lower and upper bounds for the solution of MILP to

converge to optimal global solution for large data sets. Their formulation is as follows:

Minimize
n

∑

i=1

c
∑

j=1

s
∑

k=1

wij(aik − zjk)
2

subject to

c
∑

j=1

wij = 1, ∀i,

wij ∈ {0, 1} ∀i, j, and zjk ∈ R ∀j, k. (1.5)

Here,aik is the measure of distance for genei havingk features.wij are binary vari-

ables having value of 1 if genei is in clusterj, or 0 otherwise. This model is expanded

as:

Minimize
c

∑

j=1

wij

n
∑

i=1

s
∑

k=1

a2ik −
n

∑

i=1

c
∑

j=1

s
∑

k=1

aikwijzjk +

c
∑

j=1

s
∑

k=1

zjk

n
∑

i=1

wij(zjk − aik)

Since the vector distance sum of all genes within a cluster tothe cluster center,zjk,

must be 0, following optimality condition holds:

n
∑

i=1

wij(zjk − aik) = 0, ∀j, ∀k. (1.6)
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Parametersuitij is introduced to the model to restrict some genes for specificclusters.

It takes a value of 1 only for the cluster in which a gene is allowed to be involved, but 0

for the other clusters. This parameter reduces the computational burden of the problem.

Then, the formulation becomes:

Minimize
n

∑

i=1

s
∑

k=1

a2ik −
n

∑

i=1

c
∑

j=1

s
∑

k=1

(suitij)(aikwijzjk)

subject to

(suitij)(zjk

n
∑

i=1

wij −
n

∑

i=1

aikwij) = 0 ∀j, k,

c
∑

j=1

(suitij)wij = 1 ∀i,

1 ≤
n

∑

i=1

(suitij)wij ≤ n− c+ 1 ∀j,

wij ∈ {0, 1} ∀i, j,

zLjk ≤ zjk ≤ zUjk ∀j, k. (1.7)

The first set of constraints are necessary optimality conditions; the second set of con-

straints assure that each gene belongs to exactly one cluster. The third set of constraints

assure that each cluster has at least one gene but no more thann− c+ 1 genes. The lower

and upper bounds for the continuous variablezjk arezLjk andzUjk. To convert this non-linear

model to a linear model, new variables and constraints are added to the model:
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yijk = wijzjk,

zjk − zUjk(1− wij) ≤ yijk ≤ zjk − zLjk(1− wij),

zLjkwij ≤ yijk ≤ zUjkwij, ∀i, ∀j, ∀k. (1.8)

Tan et al. [135] apply an algorithm guided by this model to three different microarray

data sets. Hayashida et al. [56] propose two graph theoreticapproaches: 1) maximizing the

number of genes covered by at most a constant number ofreporter genes, which are used

to report the expression level of a gene, and 2) minimizing the number of reporter genes to

cover all the nodes of the directed network. McAllister et al. [99] present a computational

study to solve the distance-dependent rearrangement clustering problem by using MILP.

They present three models based on the relative ordering of the elements, assignment of

the elements to a final position, and distance assignment between a pair of elements. They

report that their models can be used for discoveries at the molecular level. Dittrich et al.

[35] deal with the problem of finding biologically meaningful sub-networks from PPI data.

They transform that problem to the price-collecting Steiner tree (PCST) problem, where

the total sum of the edge weights of the subtree and the profitsassociated with the nodes

not in the subtree are minimized. They are able to solve largeinstances of the problem in a

reasonable time to optimality by the ILP approach for the transformed problem. Melia and

Pentney [100] formulate spectral clustering in a directed graph as an optimization problem

with the objective of weighted directed cut in the directed graph.Metaheuristic Clustering

AlgorithmsMetaheuristics and heuristics are algorithms that generate feasible solutions to
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hard problems. They are used when it is impossible or too timecostly to find an optimal

solution to a problem. Metaheuristics are generally used inpartition based clustering and

are rarely used in HC [14]. Genetic algorithms (GA), ant colony optimization (ACO),

Tabu Search (TS), and simulated annealing (SA) are some widely used metaheuristics.

GAs are population-based heuristics and the steps are inspired from biological phe-

nomena. Bandyopadhyay et al. [12] use a two-stage GA to cluster one artificial and three

real microarray data sets. They employ a variable string length genetic scheme and multi-

objectivity. In the first stage of the algorithm, they use an iterated version of Fuzzy C-

Means (FCM), which is fuzzy version of K-means to detect the number of clusters. They

compare the algorithm to an HC, an SOM and a Chinese restaurant-based clustering (CRC)

algorithm [117] using two cluster validation indexes:adjusted rand index[67] for artificial

data set only because the rand index uses real clusters as input, andsilhouette index[122].

[80] also employ a multi-objective GA. One of the objectivesis minimizing the total varia-

tion within clusters, which is identical to K-means’ objective. The other one is minimizing

the number of clusters in a partition. Iris and Ruspini data sets are used. [41] present a

Pareto-based multi-objective GA where objectives to be optimized are validation indices.

Pareto set, the set including the best partitions based on different objective funtions, is

used to ensemble the partition pairs to have a consensus partition. The method is applied

to six microarray data sets. The method is computationally expensive, including the dis-

similarity matrix calculations the complexity isO(n2d) wheren is the number of objects,

andd is the dimension of an object The crossover algorithm isO(nk2), wherek is the

number of clusters in the consensus partition. Wei and Cheng[147] develop an entropy-
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based clustering method in which a GA is applied. The method uses an adaptive threshold

for similarity between objects and a fitness function to calculate the clustering accuracy.

It is compared with K-means, FCM, and an entropy-based fuzzyclustering method upon

which the proposed algorithm was developed. Four data sets,one of which is breast can-

cer data, are used for comparison. [55] present a GA based biclustering algorithm with

a homogeneous clustering criterion, introduce a cluster stability criterion. The method is

used for metabolomics data sets. The proposed clustering routines are also available.

He and Hui [57] investigate ACO-based algorithms for clustering gene expression data.

The proposed algorithm, Ant-C, consists of four phases: initialization, tour construction,

pheromone update where ants leave trails on the ground to guide other ants, and cluster

output. Ant-C generates a fully connected network where each node is a gene and each

edge is a similarity weight, or pheromone intensity. Average pheromone intensity is used

as a threshold to break the linkage of the fully connected network to form clusters. MSTs

are used in case of a partially connected network to break thelinkage of the network.

Pheromone intensities are used as weights of the spanning tree. After finding the MST,

it is partitioned into sub-trees that form the clusters. Robbins et al. [120] uses an ACO

algorithm for the featureselection problemin gene expression data.

TS moves away from the trap of local optimality by using diversification strategies.

[53] apply a TS strategy to K-harmonic means clustering to avoid being trapped at local

minima. The method is tested on Iris data. SA [52, 20] also uses diversification strategy to

avoid being trapped in local optima. There are many other heuristic clustering approaches

for biological data. Particle swarm optimization (PSO) [161, 89, 37, 70], GRASP [34],
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honey-bee mating [43], memetic algorithms [102], furthest-point-first heuristic [47] are

some of them.

1.3.5 Other Algorithms and Issues

Clustering approaches are not limited to the methods listedin the sections above. The

following explain some of the clustering approaches which can be classified in one or more

of the above sections, or in a different section.

Fuzzy clustering allows an object to be assigned to more thanone cluster. The strength

of each object’s belonging to a cluster is defined by a membership function that has a value

between 0 and 1. The summation of membership values for each gene over all clusters is

1 [23]. For fuzzy clustering implementation on biological data, Ravi et al. [118] propose

two fuzzy algorithms, variants of FCM, based on athreshold acceptingheuristic. The

algorithms are compared with FCM usingE. Coli, Iris, and Thyroid data sets. The com-

parison is based upon the number of clusters and the optimal values of objective functions.

Ceccarelli and Maratea [23] use a learning metric to improveFCM. The developed FCM

is used on Iris, breast cancer, rat, sporulation, and yeast data sets. It is compared with

FCM using a modifiedentropyindex where membership values are considered as proba-

bilities, normalized and raised to the powerp. Saha and Bandyopadhyay [124] propose a

GA based fuzzy method having a computational complexity ofO(k n log n p g) wherek

is the soft estimate for upper bound of the number of cluters,p is the population size and

g is the number of maximum generation. The method is compared with an information

based clustering algorithm using yeast expression data setand validated using both a bi-
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ological validation tool and silhouette index. [107] improve both a FCM and a GA based

fuzzy clustering algorithms using a support vector machine(SVM). The method is tested

on diverse microarray data sets using C-rand and silhouetteindices. Alshalalfah and Al-

hajj [5] also use FCM with SVM on three different microarray data sets. There are many

other fuzzy clustering algorithms [61, 98, 11].

Biclustering, or subspace clustering, finds a subset of similarly expressed genes over

a subset of samples. It simultaneously clusters both rows, genes, and columns, conditions

or samples, of a data matrix, or gene expression matrix [104]. One justification to use

biclustering is that microarray data has large number of features, or genes, which may not

be relevant to the features in which a researcher is interested, and these features mask the

contribution of the relevant ones [104]. Another justification is that co-expressed genes

under certain conditions behave mostly independently under different conditions [34]. Li

et al. [87] extend a generic biclustering approach incorporating overlapping capability.

It is mentioned that the method is convenient for finding genomes with high genetic ex-

change and various conserved gene arrangement. The time complexity of the algorithm

is O(m3(n2 + log2m)) wherem is the number of data points andn is the number of di-

mensions. Subspace clustering error, row clustering error, coverage and discrepancy in

the number of clusters are used for validation purpose. Christinat et al. [28] show that

using discrete data coupled to a heuristic on continuous oneleads to biclusters which are

biologically meaningful. Li et al. [86] present a qualitative biclustering algorithm where

an expression data matrix is composed of 0 and signed integervalues. The algorithm is

applied onE. coli and yeast data sets and compared with other biclustering algorithms
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using biological enrichment criterion. Both the source code and the server version of the

algorithm are available. Cano et al. [22] present an intelligent system for clustering. The

system employs three novel algorithms. Two of them are biclustering algorithms. Madeira

and Oliveira [95] and Busygin et al. [21] present comprehensive surveys of algorithms

used in biclustering.

Shen et al. [130] propose a joint latent variable model for integrative clustering called

iCluster. iCluster is scalable to different data types, andenables the opportunity for next

generation sequencing, a new emerging technology alternative to microarrays. Ma and

Chan [93] propose an iterative approach to mine overlappingpatterns in gene expression

data. Their approach consists of two steps. First, initial clusters are generated using any

clustering algorithm. Second, cluster memberships are reassigned by a pattern discovery

technique. At the end, a gene stays in the same cluster, changes clusters, or is copied to

another cluster. Shaik and Yeasin [128] present a unified framework to find differentially

expressed genes from microarray data. The framework consists of three modules: gene

ranking, significance analysis of the genes, and validation. An adaptive subspace iteration

algorithm is used for clustering in the first module. Subspace structure is identified by an

optimization procedure.

Yip et al. [155] present some search algorithms to find dense regions in categorized,

which are discretized, or dichotomized, gene expression data. Meng et al. [101] introduce

an enrichment, a validation based on biological knowledge or database, constrained time

dependent clustering algorithm. The algorithm is specially designed for time course data

and integrated with biological knowledge guidance. Nueda et al. [114] also present three
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novel methodologies for functional assessment of time course microarray data. Ernst et al.

[40] design an algorithm specifically for clustering short time series expression data.

Model-based clustering algorithms [74, 58, 146, 150, 83] have an assumption that bio-

logical data follow a statistical distribution and try to recognize the distribution. Information-

criterion based clustering algorithm[90], adaptive clustering [27], neural network [156],

cluster ensemble [65], consensus clustering[105], game theoretical applications [106, 92]

are some of the diverse clustering approaches.

Table 1.3 presents a summary of the reviewed algorithms, including one from each

class of algorithms based on availability of the algorithm,number of times it is cited and

being recent. CRC is abbreviation for Chinese Restaurant Cluster, ISA and memISA are

biclustering algorithms, and CAGED is an algorithm designed for time series data. g is

clique size, s is the significant profile size, e is the number of edges.

Table 1.3

Summary of Reviewed Algorithms

Class Algorithm
Compared 

with
Biological Data 

Sets Used
Validation 
Method

Complexity Availability

Flat
Richards et 
al. (2008)

CRC, ISA, 
MemISA

brain expression 
(~20,000 genes)

biological O(iknm) software

Hierarchical
Langfelder 
et al. (2008)

HC, PAM Drosophila PPI 
external, 
biological 

O(n3) R package

Network
Huttenhower 
et al. (2007)

8 clustering 
algorithms

yeast 
(~6,000 genes)

biological O(ng)
J ava 

implementation

Optimization
Dittrich et al. 

(2008)
a heuristic 
approach

human PPI 
(~2,500 proteins)

biological O(e2n+en2logn) software

Other
Ernst et al. 

(2005)
K-means, 
CAGED

human
(50 profiles)

biological s4
J ava 

implementation

40



www.manaraa.com

1.3.6 Choice of an Algorithm

One issue in choosing a clustering approach for data is to decide about the suitability

of clustering algorithms for a biological application. Andreopoulos et al. [6] address a gen-

eral set of desired features that change based on application and data type used: scalability,

robustness, order insensitivity, minimum user-specified input, mixed data types, arbitrary-

shaped clusters, and point proportion admissibility. Scalability is concerned with time and

memory requirements, which increase as the data set becomeslarger. They define robust-

ness as ability to detect outliers. Order insensitivity means that clusters are not changed as

the objects’ order changes. Minimum user-specified input, as the name suggests, empha-

sizes a clustering algorithm’s reliance on user-specified input as little as possible. Mixed

data types and arbitrary shaped clusters refer to allowing objects to have numerical de-

scriptive attributes and an algorithm’s ability to find arbitrarily shaped clusters. Point

proportion admissibility means stability of the results when objects are duplicated and

re-clustered.

Another issue for choosing a clustering approach is the performance evaluation of the

approach. Internal and external performance measures are developed for evaluation. Inter-

nal measures rely on the structure of the partition, whereasexternal measures use external

information, such as the knowledge of the real clusters. Real clusters for samples are

known in advance, since samples are the designed experiments or the time course data.

Clusters of genes are not known in advance except for the wellannotated genes. Thus,

using external performance measures for algorithms that cluster genes is hard. After clus-

tering genes, researchers validate the clusters from gene databases if specific knowledge
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about the genes is available. Modularity, discussed in the “Network Based Algorithms”

section is an internal measure that makes use of the network’s structure. Modularity is

a strong measure in the sense that biological networks exhibit some common structures.

Silhouette [122] is another internal measure based on the compactness and separation of

the clusters. For an application of silhouette index, see [12]. adjusted rand index, or C-

rand [67], is an external measure of agreement between two different partitions, one of

which is real. C-rand is applicable even if the partitions donot have the same partition

size [152]. Yeung et al. [152] give an example of calculatingthe C-rand value. For other

performance measures see [91], and [156]. Using simulated data, clusters’ stability on a

partition [42], reproducibility of the clusters [46], statistical significance between clusters

[160], and comparing clustering of a combination of conditions with remaining conditions

[153] are other ways to test the performance of a gene clustering algorithm.

1.4 Conclusion and Future Research for the Operations Research Community

Clustering is fundamentally an optimization problem [7]. The clustering problem has

awakened more interest in the statistics and computer science disciplines than in the op-

timization community [136]. Hence, the OR community, with an optimization paradigm,

may become involved in and contribute more to clustering problems in the bioinformatics,

computational, and systems biology disciplines.

No clustering algorithm exists with the best performance for all clustering problems.

This fact makes it necessary to use or design algorithms specialized for the task at hand.

Algorithmic methods are challenged by the introduction of high-throughput technologies
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[15]. Guiding any clustering method with biological theoryregarding genomic data is

essential. Mathematical programming (MP) formalism offers flexibility to incorporate bi-

ological knowledge, and it is crucial to use algorithms guided by MP models for genomic

data analysis [7]. Hence, IP models taking into account the biological knowledge would

be a promising research direction. Clustering of genomic data as a data mining problem

includes challenging problems providing a relatively hot and fruitful arena for the OR

community [50]. OR has been an underutilized resource in theresearch agenda popular-

ized by network science [3]. Network-based clustering problems may involve more OR

researchers to contribute the agenda.
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1.5 Glossary

Activator: a metabolite that regulates genes by increasing the rate of transcription.

Adjusted rand index: see index.

Betweenness:here defined for an edge. The number of shortest paths proceeding along

an edge.

Biological database: database used for validating whether a clustering algorithm gen-

erates clusters that are biologically meaningful. Gene ontology (GO) is one of the most

widely used biological database.

Classification: a supervised learning technique assigning objects into thegroups already

known.

Cluster: is a group that includes objects with similar attributes. Clustering is an unsu-

pervised learning technique. Output of a clustering is a setof clusters including similar

objects, i.e., genes. Clustering is also an exploratory technique for network decomposi-

tion [85]. Clustering gathers objects into the same group based on a cluster definition or

criterion.

Clustering: see cluster.

Connectivity: minimum set of genes required to inhibit the synthesis of a product.

C-rand: see index.

Data pre-processing: a process applied to raw expression data obtained from microar-

ray experiment. Pre-processing includesquality assessment, filtering, normalization also

referred as low-level analysis.
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Dendrogram: a tree showing the hierarchical relations between groups ofobjects. Level

of a dendrogram is the cut-off value to cut the dendrogram to obtain the clusters.

Distance measure:a measure of relationship between a pair of objects. Eucledian(eab),

Manhattan (mab), Minkovski (mnab) are some examples. Correlation (cab) is also a widely

used distance measure. However,
√
1− cab approximation is used to satisfy the triangle

inequality attribute of a metric.

eab =
√

∑n
i=1 (dai − dbi)

2, mab =
∑n

i=1 (dai − dbi), mnab = p
√

∑n
i=1 (dai − dbi)

p

Entropy index: see index.

Eucledian distance:see distance measure.

eQTL: expression quantitative trait loci, genomic locations where genotype affects gene

expression.

Expression pattern: pattern that a gene exhibits through different conditions,i.e., sam-

ples.

Factor graph: spanning sub-graph of a graph.

Feature: attribute of a microarray either referrring to a spot of it ora gene.

Feature selection problem: selection of the most important, relevant genes for further

analysis to reduce the dimensions of high dimensional data.

Filtering: removing the genes that don’t exhibit significant expression change through

conditions or the genes, expression of which are below a certain threshold.

Gene: a functional unit of DNA with coded information. Reporter genes encode fluores-

cent proteins by which the expression level of gene can be observed [56]. The study of
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genes is called genomics. Genome refers to all of the fundamental genetic units, hereditary

information, in a biological cell.

Gene expression:transcription of DNA into RNA.

Genome:see gene.

Genomics:see gene.

Hub: gene with high connectivity.

Index: measure for validating the performance of a clustering algorithm. Adjusted rand

indexfor partitionsP1 andP2 (C-rand(P1, P2)), as an external validation index, is one of

the most widely used index for comparing the partition generated by a clustering algorithm

with the real partition. Silhouette index for partitionP1 (S(P1)), as an internal validation

index, is used when the real partition of a biological data isnot known. Partition entropy

index(PE) is a measure of asymmetry.C-rand(P1, P2), S(P1) andPE formulations are:

C-rand(P1, P2) =
∑

i,j (
ni,j
2 )−[

∑
i (

ni.
2 )

∑
j (

n.j
2 )]/(

n

2)
1/2[

∑
i (

ni.
2 )+

∑
j (

n.j
2 )]−[

∑
i (

ni.
2 )

∑
j (

n.j
2 )]/(

n

2)
whereni,j is the number of ob-

jects at the intersection of clustersi andj, i is the cluster index forP1, j is the cluster index

for P2. ni. is the number of objects in clusteri.

S(P1, P2) =
∑n

i=1
g(i)−a(i)

max(o(i),s(i))

n
wheren is the number of genes,o(i) is the minimum of av-

erage distaces from genei to the genes in the other clusters.s(i) is the average distance

from gene(i) to the remaining genes in the same cluster.

PE = 1
n

∑n
i

∑k
j µijlogaµij wherek is the number of clusters andµij is the membership

of i in j [23].

Manhattan distance:see distance measure.

Metabolite: product of metabolism.
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Microarray: a chip consisting of thousands of microscopic spots, i.e, features containing

genes. Two signed microarray data includes both positive and negative values corrrespond-

ing to up and down regulation respectively.

miRNA: small RNA that binds to mRNA to regulate expression.

mRNA: the RNA transcribed by a gene to be translated into a protein [97].

Modularity: a measure of improvement on random connectivity.

Next generation sequencing:a high throughput technology that allows measuring DNA

sequences directly rather than indirect way of measuring, i.e., image processing of mi-

croarrays.

Noise: irregularities in the expression data. The sources of noiseare sample prepara-

tion and hybridization process [143]. Genes that are irrelevant to clustering, i.e., non-

informative genes [72] are also regarded as noise.

Normalization: transformation of raw expression data to ensure the comparability of gene

expression levels across samples with the purpose of minimizing the systematic variations

arising from technological issues [133].

Object: gene or sample.

Partition: the output of a clustering algorithm, the set of the clustersgenerated.

Priority queue: a heap data structure. A binary tree has a heap property if andonly if it

is empty or the key of the root has a higher value than all of itsand subtrees of the tree

has a heap property as well. The root node has the highest value and once it is extracted,

regeneration of a single tree from two subtrees takesO(logn) time wheren is the number

of nodes. Heap tree is filled from left to right, once the root is deleted the right most leaf is
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taken as the root. Figure 1.9 illustrates a tree with heap property: a) First, tree extracts the

root and then the first move is bringing the right most leaf to vacant root position. Second,

root value, i.e., 6 is swapped with left subtree’s root value, i.e., 8 and the resulting new

heap tree is shown as in b). The number of swaps is at must the length of the complete

binary tree which islogn.

Figure 1.9

Priority queue

Quality assessment:a procedure to be applied on microarray data to ensure that the data

is ready for further analysis.

Regulatory site: 5-15 base-pairs of genes.

Reporter gene:see gene.

Repressor:a protein that represses the transcription of genes.

Reverse engineering:also referred as deconvolution, process of analyzing biological data

to infer about the interaction of biological components.

Sample: each microarray chip.
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Scale-free topology:a network topology where the degree distribution of nodes follow a

power law.

Silhouette index: see index.

Small world property: a network where each node has a small number of neighbor but

can reach to other nodes at a small number of steps.

Systems biology:a discipline that deals with the computational reconstruction of biolog-

ical systems.

Transcription factor (TF): activator orrepressorproteins produced by genes.

Threshold accepting:a local search strategy that allows up-hill moves for a minimization

objective.

Two-signed microarray expression data:see microarray.

Validation: assessing the performance of a clustering algorithm eitherusing performance

indices or biologically.
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CHAPTER 2

A NEW MIMIMUM SPANNING TREE BASED HEURISTIC

Biological data may be represented by networks. For example, gene expression data

may be regarded as a complete network where the genes are nodes of the network, edges

are relations between genes and pairwise correlation values obtained from expression data

are the strength of the relation, edge weights, of the gene pairs.

Clustering network data is a graph partition problem which has many variations such

as clique partition and K-way equipartition. This partitions the vertices of a graph into k

sets of equal size to minimize the weight of the edges within each set [71]. Since the graph

partitioning problem is NP-hard [8], efficient heuristics to find meaningful solutions are

developed [78].

A minimum spanning tree of a graph includes all of graph’s vertices. Using minimum

spanning trees (MSTs) of a network to cluster biological data is practical since edge re-

moval divides one group of genes into two groups directly. Removingn− 1 edges from a

tree divides the nodes inton different groups. Xu et al. [151] demonstrate that no essen-

tial information is lost with an MST representation for clustering purposes. Moreover, an

MST representation may overcome the computational burden of graph based calculations

and difficulties with dependency on the geometrical shapes of the clusters [151]. Deter-

mining the edges to remove and developing a quality measure or objective function, for
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evaluating the clusters are the most important aspects to develop a MST based heuristic.

It is desirable to have both tight and separated clusters since tight and isolated clusters

are more likely to have interdependent relationship. However, one usually either seeks to

maximize similarity within clusters or distance between clusters.

A new objective is proposed that seeks to obtain tight and separated clusters at the

same time. The objective function assumes a binary graph where there is a relation or

not. The idea is that clusters should have as small diametersas possible while an object of

a cluster should have as small number of connections with other clusters as possible. In

order to achieve this objective, the most central or betweenedges of the MST are removed

iteratively. The betweenness of an edge is the number of times an edge appears on shortest

paths between any two node pairs. The betweenness calculation of the edges is described

in [113]. The shortest path betweenness for use in the heuristic is adopted.

The work flow starts with Pearson correlation calculations compared upon expression

data sets. Correlation values are used as edge weights to construct the gene co-expression

network. The weighted network is transformed to a binary network using a threshold

retaining the strongest edges while ensuring the network isstill connected such that re-

moval of one more edge makes the network disconnected. TSI values are calculated using

the partition and the binary network. In addition to correlation calculations, expression

data are also used to calculate 6 different distances: Eucledian, Chebyshev, Manhattan,

Canberra, Minkovski, and 1-Pearson correlation. K-means,PAM and B-MST use these

distance measures and the given number of clusters to generate partitions. Partitions are
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also used to calculate adjusted rand index values. The work flow is shown in Figure 2.1

and an example is provided in section 2.

Correlations for 
samples mxm

Calculate 
threshold

Correlations for 
genes nxn

Data
nxm

Binary graph 
based on threshold

Distance matrix
samples

Clusters and Cluster memberships

K-means, PAM, B-MST

Distance matrix
genes

TSIARI

CSF

Figure 2.1

Flow of work

The chapter is organized as follows: the second section describes the B-MST method

in detail, the third section describes the comparison methods and test data sets, the fourth

section presents both external and biological validation results, and the fifth section is the

discussion and conclusion.

2.1 The B-MST Approach for Clustering

The B-MST heruistic has two phases. First, an initial solution is generated by finding

an MST of the expression data and the corresponding TSI valueis calculated. Second, a

local search mechanism is introduced to improve the TSI value. The algorithm is imple-
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mented in R and the igraph library [32] is used for applying Prim’s algorithm to generate

MSTs and other graph operations.

Figure 2.2 summarizes how the initial solution is generatedusing B-MST. An MST is

generated using distance values between gene pairs as edge weights of the co-expression

network. n − 1 edges are removed from the MST to obtainn clusters. Betweenness

values of the edges are used to decide which edges to remove. The edge with the highest

betweenness value is removed and all betweenness values arerecalculated to remove the

next edge with the highest betweenness. Edge removal goes onuntil the desired number of

clusters are obtained. For the example illustrated in 2.2, the number of clusters is chosen

2. Euclidean distance measure is used to form the MST. The smallest indexed edge is

removed when there is more than one highest betweenness score. In the example, the

edge, (1,3), has the smallest index.

The expression network is transformed to a binary graph using a threshold as explained

in section 1. For the example graph in Figure 2.2, this threshold is 34 percent below

which the binary graph is not connected. In other words strongest 5 edges are retained

and removal of one more edge makes the graph disconnected. Edge weights are Pearson

correlation values between gene pairs. The higher the value, the stronger the edge is. This

binary graph is then used to calculate the TSI value.

Figure 2.2 a) is a representative complete expression graphwith 6 nodes and 15 edges.

The6× 6 Expression data was generated using 6 normal distributionswith different stan-

dard deviations. 10 samples were generated by each of the normal distribution. Red dashed

edges form the MST of the graph. b) is the MST of the graph in a).Red dashed edges
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are the ones with the highest betweenness score that is 8. c) is the partition with two clus-

ters. The corresponding partition vector is also shown below the clusters. d) is the binary

network transformed from a).

Cluster 1 Cluster 2

a) b)

c)d)

1

2

3 4

5

6

1 1 1 2 2 2

Figure 2.2

Initial Solution by B-MST

Although MSTs were used in clustering biological data [151], and the betweenness

approach was applied on graph partition [113], the betweenness approach was not applied

on an MST for clustering biological data.

2.1.1 Tightness and Separation Index

A new objective function, TSI, is defined and used in the heuristic. The TSI considers

both the tightness and the separation of the clusters. Tightness is obtained by minimizing

the maximum diameter among the diameters of clusters. The diameter of a cluster is

defined as the maximum of the shortest path distances betweengene pairs. Separation is

54



www.manaraa.com

obtained by minimizing the maximum number of connections ofa gene inside a cluster

with other clusters. The TSI value calculation is realized on the binary graph. The shortest

paths between nodes are used as distance values between genepairs. The idea of using

shortest paths is based on the transitive gene expression approach assuming that functions

are often the result of many genes interacting with each other rather than a result of a

simple pairwise relation[164]. However, transitive expression implies that there is at least

one path, not necessarily of length 1 (assuming a binary graph) as in a pairwise relation,

between two genes. The length of this path is the shortest path distance between these

genes. Researchers propose that a transitive co-expression analysis applying a shortest

path distance between two genes as in (Figure 1.5) gives morebiologically meaningful

results, rather than a direct pairwise distance measure [162, 164]. The TSI is formulated

as follows:

Dmax + kout
max (2.1)

Dmax =max
s∈S

{Ds},S = {1, 2, ..., c}wherec is the number of clusters.Ds = max
i,j∈N,i 6=j

{dij},

N = {1, 2, ..., n} wheren is the number of genes,dij is the shortest path distance between

genei and genej. kout
max = max

i∈N,i 6=j
{

n
∑

j=1

aij −
n

∑

j=1

aijxij}, whereaij is 1 if genesi andj are

connected, 0 otherwise andxij is 1 if i, j are in the same cluster, 0 otherwise.

For example, TSI value for the partition in Figure 2.2 c) is 5 whereDmax is 4 andkout
max

is 2.
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2.1.2 Local Search

Local search seeks for improvement on objective function value based on a neigh-

borhood definition. Here, neigborhood is defined in such a waythat a partitionP ′ is a

neighbor to a partitionP if a gene inP is transferred from its current cluster to another

cluster with which it has a connection. Starting from the first gene of candidate genes

list (Clist), which includes the genes that have at least oneconnection with other clusters,

a gene is transferred to the cluster with which it has the highest number of connections.

This is the first cluster in the transfer list (Tlist(i)) thatincludes the clusters to which gene

i has at least one connection, and this list is sorted descending order of the number of con-

nections that the gene i has with other clusters. New objective value is calculated. If the

new value is smaller than the initial objective function value, the partition, objective value,

and transfer list are updated. This procedure is repeated until there is no improvement

andn number of steps have been executed after an improvement, where n is the number

of genes. The local search procedure is shown in Figure 2.3. The second and the fourth

objects are transferred to the first cluster. TSI value changes from 6 to 4.

Local search transfers the nodes to the clusters which they have the highest number of

connections, if this transfer would improve the objective function value. For example, the

cluster membership changes with applying local search for the partition in Figure 2.2.

It takesO(cn2) time to find the initial solution wherec is the number of clusters, using

B-MST. This is due to betweenness calculations takingO(n2) time and are repeatedc− 1

times. Local search takesO(cn(m + n)) time to find the best neighboring solution for a

given solution, wherem is the number of edges in the binary graph.
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Initialization

Is 
Clist = ∅?

Output

Pick gene i from Clist
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Yes
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Figure 2.3

Local search procedure
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2.2 Comparison Methods and Data Sets

Here, the performance of B-MST method is compared to K-means, PAM and CSF. K-

means is implemented in the R base package, PAM is implemented in R clusterpackage,

and the community structure finding algorithm [111] CSF is implemented in the Rigraph

package. One reason for choosing K-means and PAM is that theyare widely used, and

fast in clustering high dimensional data. The CSF is a recent, fast and well cited method.

K-means has a time complexity ofO(tcnm) [96] wheret, c, n, m are the number of

iterations, clusters, objects, and attributes respectively. PAM takesO(c(n− c)2) for each

change and CSF isO(n3). The system times for B-MST, K-means, PAM and the local

search on Leukemia data set using Euclidean distance measure are 0.086, 0.128, 0.131,

4.355 respectively.

12 datasets are used for external validation and 2 data sets are used for biological

validation. The features of the data sets are summarized in Table 2.1.

The microarray is a device which measures expression (abundance of RNAs) of thou-

sands of genes simultaneously. BreastA and BreastB are cancer diagnosis microarray data

sets having 98 and 49 samples respectively with 1213 attributes. BreastA is generated

using 2-channel oligonucleotide microarrays and BreastB is generated using 1-channel

microarray technology. DLBCLA is a diffuse large B-cell lymphoma data set having 141

samples with 661 attributes. Tumor specimens and retrospective clinical data from 176

DLBCL patients were analyzed and 80 percent of the samples (141/176 tumors) were used.

The protein data set has 698 protein folds with 125 attributes. MultiA is a gene expression

data set with 103 cancer type samples and 5565 genes. Novartis is the same data set which
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Table 2.1

Summary of Data Sets

Data sets # of objects # of features # of classes
ALB 38 722 3
Brain 37 781 5
cGCM 90 630 13
Leukemia 248 985 6
LungA 197 188 4
Novartis 103 502 4
BreastA 98 1213 3
BreastB 49 1213 4
DLBCLA 141 661 3
Protein 698 125 4,27
CNS 112 9 4
Yeast1 384 17 5
Yeast2 474 7 NA
Yeast3 2467 79 NA

has been normalized and the number of genes reduced to 1000. BreastA, BreastB, DLB-

CLA, DLBCLB and MultiA are pre-processed by [63]. The data sets mentioned till here

are described and addressed in [108]. The ALB, Leukemia, Brain, cGCM, LungA can-

cer data sets are obtained from http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi.

Yeast1 is the yeast cell cycle data described in [154]. CNS rat data and Yeast2 yeast sporu-

lation data are addressed in [12]. Yeast3 is the yeast cell cycle data mentioned in [39].

All of the data sets except the last two yeast data are used forexternally validation.

Adjusted rand index (ARI) [67] is used for this validation. Higher ARI values indicate

that partitions generated are closer to the real ones. ARI values can take on between -1

and 1. The Yeast2 and Yeast3 data sets are used for biologicalvalidation. Since high ARI

values correspond to low TSI values in most of the comparisons, the algorithms resulting
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in the best two TSI values are compared. B-MST is compared with CSF using Yeast2

and with PAM using Yeast3 since the CSF found the best TSI value for Yeast2 and PAM

found the second best (after B-MST) TSI value for Yeast3. Algorithms are compared

based on significantly clustered genes with the same biological process information which

is determined by Gene Ontology (GO) terms. A similar biological inference strategy that

was used by [12] is employed. This strategy results in multiple selectivity values. The

highest selectivity values of all the clusters obtained by each algorithm are compared.

2.3 External and Biological Validation Results

As mentioned earlier, B-MST, K-means and PAM use distance measures to generate

partitions. However, the CSF is independent of a distance measure. The CSF algorithm

uses the binary network to generate clusters. For B-MST, if local search does not result

in better ARI value, then the initial solution and the corresponding TSI value is shown

through tables 2-7. Biological inference is realized usingFatiGO [2]. FatiGO reports the

percentage of annotated genes for a biological process in a cluster and the same percentage

for the remaining genes of the data set. Using these percentage values, selectivity values

for all clusters are calculated. For a given cluster and biological process, the selectivity is

the difference between the percentage of annotated genes inthe cluster and the percentage

of annotated genes outside this cluster for the same biological process. Highest selectivity

values are compared for the CSF and PAM. The CSF was not eligible for the Yeast3 since

it finds at most 14 clusters while I determined the number of clusters 15.
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2.3.1 External validation

To conduct our external validation, the ARI values were found for the partitions gen-

erated by B-MST, K-means, and PAM. The first 12 data sets shownin Table 2.1 are used

for the external validation. Each table presents ARI and TSIvalues for a different distance

measure. The first column gives the names of the data sets, from the second column to the

fourth column, ARI values for B-MST, K-means and PAM are given, from the fifth to the

last column, TSI values for B-MST, K-means and PAM are given.The highest ARI and

TSI values for each data set are in shown in bold.

Table 2.2

ARI and Objective Values for Euclidean Distance Measure

ARI TSI
Data Sets B-MST K-means PAM B-MST K-means PAM
ALB 0.781 0.138 0.394 16 25 20
Brain 0.596 0.429 0.774 20 23 19
cGCM 0.636 0.115 0.228 39 39 30
Leukemia 0.527 0.684 0.939 108 101 81
LungA 0.069 0.765 0.872 38 40 40
Novartis 0.946 0.875 0.897 34 47 36
BreastA 0.565 0.597 0.527 40 31 31
BreastB 0.155 0.128 0.213 42 42 42
DLBCLA 0.162 0.076 0.176 104 114 108
Protein-4 0.106 0.320 0.203 437 361 428
Protein-27 0.094 0.137 0.090 535 518 516
CNS 0.085 0.030 0.125 58 60 61
Yeast1 0.114 0.008 0.069 173 186 174
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Table 2.3

ARI and Objective Values for Chebyshev Distance Measure

ARI TSI
Data Sets B-MST K-means PAM B-MST K-means PAM
ALB 0.577 0.311 0.241 19 19 20
Brain 0.503 0.623 0.390 23 24 20
cGCM 0.636 0.115 0.228 39 34 32
Leukemia 0.311 0.280 0.425 104 106 115
LungA 0.144 0.288 0.290 44 45 41
Novartis 0.491 0.270 0.696 45 50 51
BreastA 0.215 0.269 0.223 35 37 38
BreastB 0.095 0.218 0.050 42 43 42
DLBCLA 0.117 0.083 0.114 110 112 108
Protein-4 0.099 0.265 0.308 433 476 455
Protein-27 0.067 0.133 0.080 533 535 526
CNS 0.111 0.016 0.110 57 61 51
Yeast1 0.104 0.022 0.091 185 182 174

Table 2.4

ARI and Objective Values for Manhattan Distance Measure

ARI TSI
Data Sets B-MST K-means PAM B-MST K-means PAM
ALB 0.781 0.092 0.394 16 22 20
Brain 0.662 0.420 0.822 19 23 18
cGCM 0.553 0.230 0.301 37 30 29
Leukemia 0.557 0.790 0.947 97 96 80
LungA 0.074 0.497 0.873 36 43 40
Novartis 0.897 0.555 0.947 35 48 34
BreastA 0.406 0.597 0.527 36 43 33
BreastB 0.194 0.128 0.129 42 42 31
DLBCLA 0.402 0.124 0.352 108 107 102
Protein-4 0.111 0.314 0.160 489 439 452
Protein-27 0.075 0.125 0.071 532 541 527
CNS 0.101 0.032 0.095 57 61 61
Yeast1 0.100 0.006 0.073 166 182 174
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Table 2.5

ARI and Objective Values for Canberra Distance Measure

ARI TSI
Data Sets B-MST K-means PAM B-MST K-means PAM
Leukemia 0.547 -0.005 0.453 90 115 121
LungA 0.064 -0.023 0.043 43 28 47
BreastB 0.158 0.241 0.129 40 42 31
DLBCLA 0.535 0.336 0.697 100 105 105
Protein-4 0.112 0.272 0.144 487 461 349
Protein-27 0.098 0.149 0.121 530 530 523
CNS 0.076 0.014 0.031 53 54 55
Yeast1 0.107 0.004 0.048 165 182 174

Table 2.6

ARI and Objective Values for Minkovski (P = 3) Distance Measure

ARI TSI
Data Sets B-MST K-means PAM B-MST K-means PAM
ALB 0.833 0.138 0.355 17 21 21
Brain 0.596 0.438 0.774 20 22 19
cGCM 0.641 0.153 0.256 39 31 34
Leukemia 0.626 0.808 0.804 105 94 81
LungA 0.083 0.531 0.887 40 41 40
Novartis 0.684 0.681 0.973 42 38 34
BreastA 0.692 0.633 0.462 39 32 30
BreastB 0.345 0.286 0.218 39 42 41
DLBCLA 0.270 0.051 0.143 106 116 108
Protein-4 0.062 0.297 0.249 465 454 467
Protein-27 0.080 0.119 0.096 533 531 519
CNS 0.057 0.025 0.083 55 61 53
Yeast1 0.061 0.009 0.065 166 186 173
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Table 2.7

ARI and Objective Values for Correlation Distance Measure

ARI TSI
Data Sets B-MST K-means PAM B-MST K-means PAM
ALB 0.341 1.000 0.910 21 17 17
Brain 0.542 0.557 0.789 25 20 20
cGCM 0.527 0.554 0.578 41 30 29
Leukemia 0.594 0.575 0.940 108 106 81
LungA 0.088 0.333 0.317 48 41 40
Novartis 0.898 0.620 0.946 34 44 34
BreastA 0.406 0.470 0.527 39 42 41
BreastB 0.205 0.266 0.420 41 42 42
DLBCLA 0.330 0.192 0.214 103 92 111
Protein-4 0.099 0.243 0.238 432 362 448
Protein-27 0.089 0.131 0.117 535 528 519
CNS 0.066 0.160 0.134 53 50 51
Yeast1 0.283 0.522 0.445 169 140 173

Investigating these tables, B-MST outperformed both K-means and PAM in 6 data sets

out of 12. These data sets are BreastB, DLBCLA, ALB, cGCM, Yeast1, and CNS. For

example, B-MST finds the best rand index values, 0.781, 0.577, 0.781, 0.833 in 4 distance

measures, Euclidean, Chebyshev, Manhattan, Minkovski andthe worst value, 0.341 only

once in Pearson for ALB. Remaining data sets are evaluated ina similar manner. K-means

and PAM outperformed B-MST in 2 and 4 data sets respectively.

For the same 12 data sets, ARI and TSI values were also found using the CSF. As can

be seen from Table 2.8, B-MST’s highest ARI values are compared to the ones found by

CSF. B-MST found higher ARI values for all of the data sets except Leukemia.
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Table 2.8

ARI and Objective Values for B-MST and CSF

ARI TSI
Data Sets B-MST CSF B-MST CSF
ALB 0.833 0.109 17 18
Brain 0.662 0.326 19 23
cGCM 0.641 0.364(11 clusters) 39 29
Leukemia 0.626 0.661 105 86
LungA 0.144 0.059 44 27
Novartis 0.946 0.795 34 32
BreastA 0.692 0.521 39 35
BreastB 0.345 0.238(3 clusters) 39 47
DLBCLA 0.592 0.274 97 105
Protein-4 0.139 0.137 432 443
Protein-27 0.098 0.061 530 460
CNS 0.111 0.024 57 47
Yeast1 0.283 0.281 169 110

From Tables 2.2-2.7, it is observed that the maximum ARI values correspond to the

minimum of the TSI values in most cases. Hence, it is proposedthat the partition with

smaller TSI value is expected to have more biologically relevant clusters.

2.3.2 Biological Inference

GO biological process terms of the clusters are investigated using the Yeast2 and

Yeast3 data sets. Yeast2 clusters found by B-MST are compared with CSF’s and Yeast3

clusters from B-MST are compared with PAM’s. The highest selectivity values in a cluster

are chosen for comparison. The number of clusters is determined to be 8 for Yeast2 and

15 for Yeast3. The numbers are decided by visualization of the dendrograms generated by

hierarchical clustering (HC) with average linkage such that clusters include enough num-
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ber of genes visually. HC cut-off levels are 650 and 6 for Yeast2 and Yeast3 respectively.

Clusters having less then 10 genes are not considered. The number of clusters are also

supported by Dynamic Tree Cut algorithm [82]. Dynamic Tree Cut detects the number of

clusters based on the shape of a dendrogram. It has user defined parameters such as min-

imum cluster size and the cut height of the tree. These parameters are set to reasonable

values 10, 150.5 and 10, 13 for Yeast2 and Yeast3 respectively. Dendrograms for Yeast2

and Yeast3 are given in Figures 2.4 and 2.5. The Euclidean distance measure was used in

all algorithms.

Figure 2.4

Dendrogram for Yeast2
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Figure 2.5

Dendrogram for Yeast3

GO terms are too general at lower levels and too specific at upper levels. Hence, GO

levels are chosen between 7 and 9. The highest selectivity values of the clusters are plotted

in Figure 2.6 and Figure 2.7. For example, for cluster 4 of Figure 2.6, the highest selectivity

value for B-MST is 20.46 while it is 11.66 for the CSF. Zero values in the figures indicate

that the there is no significant biological process found among the genes in this cluster.

Negative value in the Figure 2.7 indicates that the percentage of annotated genes in this

cluster for a specific biological process is less than the percentage of the annotated genes

in the remaining clusters for the same biological process. In this sense, a negative value is

not worse than a zero value, since it at least indicates a relationship regarding a biological

process.
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Figure 2.6

Highest selectivity values found by B-MST and CSF

Figure 2.7

Highest selectivity values found by B-MST and PAM
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2.4 Discussion and Conclusion

Clustering high throughput biological data efficiently is essential especially when

there is a lack of prior information about the interactions between biological molecules.

The high dimensional nature of the abundant data makes it necessary to design efficient

and effective algorithms generating biologically meaningful clusters.

In this study, a minimum spanning tree based algorithm, B-MST, is developed to clus-

ter gene expression data efficiently. The algorithm uses a new objective function, TSI,

which is used as a measure of tightness and separation at the same time considering tran-

sitive distances on a binary graph to generate biologicallymeaningful clusters.

Many distance measures and diverse data sets were employed for ARI calculations to

show that B-MST is compelling since a few distance measures and data sets are easily op-

timized [121]. Moreover, a unique validation index fed by biological theory is developed

to be used for guiding many clustering approaches as well as B-MST.

B-MST is tested using 14 different data sets. Twelve of the data sets are used for

external validation by the ARI measure. ARI values generated by K-means, and PAM are

compared with values by B-MST. B-MST outperforms the other methods for 6 data sets.

B-MST’s performance is also compared with a well cited community structure algorithm,

CSF. B-MST’s highest rand index values are compared with CSF’s values, since CSF is

independent of distance measures. B-MST outperforms CSF inall of the data sets except

Leukemia. The remaining two of the 14 data sets are used for biological inference. B-MST

finds clusters with higher selectivity values than CSF, except for one cluster for the Yeast2

data set. B-MST finds biological process relevance in 7 clusters out of 8 while CSF finds
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relevance in 6 of them. B-MST also finds higher selectivity values in most of the clusters

than PAM for Yeast3. B-MST finds biological process relevance in 13 clusters while PAM

finds in 10 out of 15.

The new TSI measure serves as a new quality measure to validate a result from a

clustering algorithm using biological data. In external validation, minimum TSI values

corresponds to maximum rand index values in most of the cases. In biological inference,

CSF finds quite smaller TSI value for Yeast2, (100) compared to B-MST (100). B-MST

finds a smaller TSI value, (845) compared to PAM (853). Hence,regarding biologically

enriched genes in clusters with lower TSI values, the TSI is agood quality measure to be

used in clustering biological data.

70



www.manaraa.com

CHAPTER 3

CONCLUSION AND FUTURE RESEARCH

Clustering of high throughput biological data is a powerfulmethod to guide biologi-

cal experiments which impose high laboratory cost otherwise. Although many clustering

algorithms exist, they are either general purpose or inefficient to handle high dimensional

data. It is necessary to build efficient and effective algorithms that consider biological

facts as much as possible. Here a MST based heuristic is developed and a new objective

function is defined to assess the quality of partitions generated by the heuristic. The objec-

tive function uses transitive distances rather than pairwise which is biologically reasonable

since an output is by the interactions of many biological components rather than two.

Different network topologies will affect the TSI value since TSI uses a binary network.

For example, if the network is dense, clusters will have small diameters and the genes

inside clusters will have a large number of connections withother clusters. Hence, B-MST

and TSI measure should be used especially when the binary network is sparse. Another

issue when the binary network is dense is thatkout
max will dominate the effect ofDmax. This

fact leads to parameter optimization study employing different co-efficients for bothDmax

andkout
max parameters.

The optimization paradigm helps design powerful algorithmsince clustering could

be viewed as an optimization problem. The objective function is minimized using two
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variables,Dmax andkout
max. The first one is for obtaining tight clusters and the latter one is

for separating the clusters well.

Regarding the high dimensional nature of the gene expression data, a heuristic is devel-

oped and tested by comparing two commonly used and one recentand well cited clustering

algorithms using 14 different data sets and 15 scenarios. Both external and biological val-

idation indicate that the proposed method is both efficient and effective for clustering high

throughput biological data.

For a future algorithmic study a mixed integer programming clustering model is devel-

oped as follows:

Minimize Dmax + kout
max

subject to

Dmax ≥ dij(xis + xjs − 1) ∀i, j, s i < j (3.1)

c
∑

s=1

xis = 1 ∀i (3.2)

n
∑

i=1

xis ≥ 1 ∀s (3.3)

n
∑

j=1

Aijxjs ≥ xis(

∑n
j=1Aij

2
) ∀i, s (3.4)

n
∑

j=1

Aijxjs ≥ xis(

n
∑

j=1

Aij − kout
max) ∀i, s (3.5)

xis ∈ {0, 1} ∀i, s (3.6)

kout
max ≥ 0 (3.7)
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Model parameters are:n number of genes,c number of clusters,dij shortest path

distances between genesi and j, Aij is the adjacency of genesi and j , 1 if they are

connected, 0 otherwise. Model variables are:xis which are 1 if gene i is assigned to

cluster s, 0 otherwise.Dmax is the length of the largest diameter among all.kout
max is the out

connection number of the gene which has the maximum number ofconnections with the

genes outside its cluster. 3.1 is the maximum diameter constraint. 3.2 ensures that each

gene is assigned to exactly one cluster. 3.3 ensures that a cluster has at least one gene.

3.4 ensures that a gene has at least as many connections with genes inside its cluster as

the number of connections with genes outside its cluster. 3.5 establishes the relation with

objective function. 3.6 and 3.7 ensure thatxis are binary andkout
max is real, greater than 0.

At the beginning of this research, first the model was developed. The model was solved

using small data sets and two social networks data sets. The results led to the development

of a heuristic to solve the model because of the high dimensional nature of biological data.

However, since the model had tight constraints, such as the number of connections of a

gene inside its clusters should be at least equal to the number of connections with other

clusters, B-MST emerged independently from the model. Comparing this MIP model with

a traditional clustering model and developing algorithms guided by the model are intended

for future studies. Both the model and algorithms can be applied to relational data in fields

such as biology and sociology.
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